Answer: A molecule of hydrochloric acid, for example, is composed of a hydrogen atom and a chlorine atom. When these molecules dissolve into water, they separate into a positively charged hydrogen ion and a negatively charged chlorine ion. ... Only some of the molecules of weak acids disassociate when added to water.
Explanation:
<u>Given:</u>
Mass of solvent water = 4.50 kg
Freezing point of the solution = -11 C
Freezing point depression constant = 1.86 C/m
<u>To determine:</u>
Moles of methanol to be added
<u>Explanation:</u>
The freezing point depression ΔTf is related to the molality m through the constant kf, as follows:
ΔTf = kf*m
where ΔTf = Freezing point of pure solvent (water) - Freezing pt of solution
ΔTf = 0 C - (-11.0 C) = 11.0 C
m = molality = moles of methanol/kg of water = moles of methanol/4.50 kg
11.0 = 1.86 * moles of methanol/4.50
moles of methanol = 26.613 moles
Ans: Thus around 26.6 moles of methanol should be added to 4.50 kg of water.
Answer:
The Bohr model of the atom explains the reactivity of all atoms.
Ionic bonds are formed when one of the two atoms that are reacting has excess electrons and transfer the electrons to the atom that is deficient in electrons. During the formation of the ionic bond, one of the reacting atoms will donate electrons and form positive ion.
The name of CuO is copper II oxide and its bond type is ionic or electrovalent bond.
<h3>What is electrovalent bond?</h3>
An ionic or electrovalent bond is the type of chemical bond where two atoms or molecules are connected to each other by electrostatic attraction.
This electrostatic attraction is as a result of the transfer of electrons from the metallic element to the non-metal.
According to this question, CuO is a chemical compound consisting of two elements namely; copper and oxygen. The compound name is copper II oxide.
Copper as a metal transfers electrons to oxygen atoms, hence, an ionic bond is formed between the molecules.
Learn more about ionic bonds at: brainly.com/question/11527546
#SPJ1