Answer:
0.297 °C
Step-by-step explanation:
The formula for the <em>freezing point depression </em>ΔT_f is
ΔT_f = iK_f·b
i is the van’t Hoff factor: the number of moles of particles you get from a solute.
For glucose,
glucose(s) ⟶ glucose(aq)
1 mole glucose ⟶ 1 mol particles i = 1
Data:
Mass of glucose = 10.20 g
Mass of water = 355 g
ΔT_f = 1.86 °C·kg·mol⁻¹
Calculations:
(a) <em>Moles of glucose
</em>
n = 10.20 g × (1 mol/180.16 g)
= 0.056 62 mol
(b) <em>Kilograms of water
</em>
m = 355 g × (1 kg/1000 g)
= 0.355 kg
(c) <em>Molal concentration
</em>
b = moles of solute/kilograms of solvent
= 0.056 62 mol/0.355 kg
= 0.1595 mol·kg⁻¹
(d) <em>Freezing point depression
</em>
ΔT_f = 1 × 1.86 × 0.1595
= 0.297 °C
Answer:
volume
v = 4/3π r^3
Explanation:
it isn't specific enough but that is the equation of how to get any volume
volume equals four thirds times pi times radios to the power of three
Molar mass of oxygen gas:
O₂ = 16 * 2 = 32.0 g/mol
1 mole O₂ -------------- 32.0
9.05 mole O₂ ---------- ?
Mass = 9.05 * 32.0
Mass = 289.6 g of O₂
hope this helps!
It can possible be you're arteries or also you're intestines with is large and small.