1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masteriza [31]
3 years ago
5

A tennis ball with a velocity of +10.0 m/s to the right is thrown perpendicularly at a wall. After striking the wall, the ball r

ebounds in the opposite direction with a velocity of â8.0 m/s to the left. If the ball is in contact with the wall for 0.012 s, what is the average acceleration of the ball while it is in contact with the wall?
Physics
1 answer:
netineya [11]3 years ago
6 0

Answer:

-1500 m/s2

Explanation:

So the ball velocity changes from 10m/s into the wall to -8m/s in a totally opposite direction within a time span of 0.012s. Then we can calculate the average acceleration of the ball as the change in velocity over a unit of time.

a = \frac{\Delta v}{\Delta t} = \frac{-8 - 10}{0.012} = \frac{-18}{0.012} = -1500 m/s^2

You might be interested in
Giving 25 points need help ASAP!
Bumek [7]

Answer:

i dont exactly know the answer but i do know the formula

Explanation:

1/ 1/R1 + 1/ R2+

4 0
3 years ago
The frequency of a wave is 10 Hz. If the speed of the wave is 5 m/s, what is the wavelength? A. 0.5 m B. 2 m C. 10 m D. 50 m
Sladkaya [172]
I'm pretty sure the answer is A. 0.5. Sorry if i'm wrong.
6 0
3 years ago
Projectile Motion
lakkis [162]

Answer:

a)  F = (m / t₀) 95.33

 b)  θ = 70.5º

Explanation:

This is a projectile launch, as they indicate the horizontal distance this is the range of the body,  let's use the expression for the range of the projectiles

            R = v₀² sin 2θ / g

            v₀² sin 2θ = R g

Where the range is  550.46 m

They also indicate the time that the air must remain, so this time is twice the time until reaching the maximum height.

        v_{y} = v_{oy} - g t

At the maximum height v_{y} = 0 and the initial speed on the axis and we can find it with trigonometry

         sin θ = v_{oy} / v_{o}

         v_{oy} = v_{o} sin θ

         v_{o} sin θ = g t

Let's write the two equations

             v_{oy}² sin 2θ = g R

             v_{o} sin θ = g t

 We solve our accusation system

              (G t / sin θ) 2 sin 2θ = g R

              g t² sin 2θ = R sin  θ

               

Let's use the trigonometric relationship

         sin 2θ = 2 sin θ cos θ

We substitute

           g t² (2 sin θ cos θ) = R sin θ

             

          Cos tea = R / 2 g t²

          θ = cos⁻¹ (R / 2g t²)

Let's calculate

          θ = cos⁻¹ (550.46 / (2  9.8  9.17² ))

          θ = 70.5º

a) Force can be  Newton's second law

On the x axis the speed is constant so the force on the axis is zero

In the y axis the acceleration we have is the acceleration of gravity, so the force that acts throughout the journey is the weight of the body.

To place the body in the air from the rest we can use the equation of the impulse

          F t = Δp = m v - m v₀

As kick from rest   v₀ = 0

           

Let's find the speed of the body

         v_{oy} = g t

          v_{o} = g t / sin 70.5

         v_{o} = 9.8 9.17 / sin 70.5

         v_{o} = 95.33 m / s

To encocorate the force we must suppose a firing time, which in general is very short, suppose that this time is to

           F = m v_{o} / t₀

           F = (m / t₀) 95.33

This is the outside that should be applied, as an example suppose a body of mass 1 kg⁵ ( m = 1 kg) and a trip time to = 0.1 s

           F = (1 / 0.1) 95.33

          F = 953.3 N

7 0
3 years ago
The temperature and pressure at the surface of Mars during a Martian spring day were determined to be -41 oC and 900 Pa, respect
Fittoniya [83]

Answer:

Part a)

\rho = 0.0205 kg/m^3

Part b)

\rho = 1.22 kg/m^3

So density of atmosphere at Martian Surface is very less than the density at Earth.

Explanation:

Part a)

As per ideal gas equation we know that

PM = \rho RT

here we know that Martian atmosphere is equivalent to that of carbon

so we will have

P = 900 Pa

T = 273 - 41 = 232 K

now we will have

(900)(0.044) = \rho (8.31)(232)

\rho = 0.0205 kg/m^3

Part b)

Now for the earth surface the density of air is given for

P = 101.6 kPa

T = 18 ^oC

so we will have

PM = \rho RT

(101.6\times 10^3)(0.029) = \rho(8.31)(273 + 18)

\rho = 1.22 kg/m^3

So density of atmosphere at Martian Surface is very less than the density at Earth.

8 0
2 years ago
What are the characteristics of the radiation emitted by a blackbody? According to Wien's Law, how many times hotter is an objec
jasenka [17]

Answer:

a) What are the characteristics of the radiation emitted by a blackbody?

The total emitted energy per unit of time and per unit of area depends in its temperature (Stefan-Boltzmann law).

The peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increase (Wien’s displacement law).

The spectral density energy is related with the temperature and the wavelength (Planck’s law).

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wave length of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

Explanation:

A blackbody is an ideal body that absorbs all the thermal radiation that hits its surface, thus becoming an excellent emitter, as these bodies express themselves without light radiation, and therefore they look black.

The radiation of a blackbody depends only on its temperature, thus being independent of its shape, material and internal constitution.

If it is study the behavior of the total energy emitted from a blackbody at different temperatures, it can be seen how as the temperature increases the energy will also increase, this energy emitted by the blackbody is known as spectral radiance and the result of the behavior described previously is Stefan's law:

E = \sigma T^{4}  (1)

Where \sigma is the Stefan-Boltzmann constant and T is the temperature.

The Wien’s displacement law establish how the peak of emission of the spectrum will be displace to shorter wavelengths as the temperature increase (inversely proportional):

\lambda max = \frac{2.898x10^{-3} m. K}{T}   (2)

Planck’s law relate the temperature with the spectral energy density (shape) of the spectrum:

E_{\lambda} = {{8 \pi h c}\over{{\lambda}^5}{(e^{({hc}/{\lambda \kappa T})}-1)}}}  (3)

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wavelength of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

It is need it to known the temperature of both objects before doing the comparison. That can be done by means of the Wien’s displacement law.

Equation (2) can be rewrite in terms of T:

T = \frac{2.898x10^{-3} m. K}{\lambda max}   (4)

Case for the object with the blackbody emission spectrum peak in the blue:

Before replacing all the values in equation (4), \lambda max (450 nm) will be express in meters:

450 nm . \frac{1m}{1x10^{9} nm}  ⇒ 4.5x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{4.5x10^{-7}m}

T = 6440 K

Case for the object with the blackbody emission spectrum peak in the red:

Following the same approach above:

700 nm . \frac{1m}{1x10^{9} nm}  ⇒ 7x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{7x10^{-7}m}

T = 4140 K

Comparison:

\frac{6440 K}{4140 K} = 1.55

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

4 0
3 years ago
Other questions:
  • you hold a mug of hot chocolate to warm your hands. Which type of heat transfer are you demonstrating?
    11·2 answers
  • a 4lb ball is travelling in a circle radius 3ft speed 6ft/s. the attached cord pulled through the center has constant speed 2ft/
    7·1 answer
  • PLEASE HELP ASAP!! WILL MARK AS BRAINLIEST IF ANSWERED NOW!!
    13·1 answer
  • During a science fair, a group of students came up with the following question: “Is color an inherent property in objects or is
    5·2 answers
  • If a 990 kg car is traveling on the road and the Ff is 360 N to the east and the applied force is 1330 N to the west, what is th
    6·1 answer
  • A 200-mm lever and a 240-mm-diameter pulley are welded to the axle BE that is supported by bearings at C and D. A 860-N vertical
    11·1 answer
  • Material speed of light
    10·1 answer
  • Explain one inference scientists made about the interior of the Earth based on seismic waves. Use the words S & P waves in y
    7·1 answer
  • If a ball is rolling at a velocity of 1.5 m/s and has a momentum of 10.0 kg times m/s, what is the mass of the ball?
    5·1 answer
  • ILL GIVE BRAILIST THING
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!