When dealing with multiple forces acting on a body, it is advisable to draw a free-body diagram like that shown in the picture. There are four forces acting on the box: weight (W) pointing straight down, normal force perpendicular to the slope denoted as Fn, force used to push the box upwards along the slope and the frictional force acting opposite to the direction of motion of the box denoted as Ff. Frictional force is equal to coefficient of kinetic friction (μk) multiplied with Fn.
∑Fy = Fn - mgcos30° = 0
Fn = (50)(9.81)(cos 16) = 471.5 N
When in motion, the net force is equal to mass times acceleration according to Newton's 2nd Law of Motion:
Fnet = F - μk*Fn - mgsin30° = ma
250 - (0.2)(471.5 N) - (50)(sin 16°) = (50)(a)
a = 2.84 m/s²
We know the equation
weight = mass × gravity
To work out the weight on the moon, we will need its mass, and the gravitational field strength of the moon.
Remember that your weight can change, but mass stays constant.
So using the information given about the earth weight, we can find the mass by substituting 100N for weight, and we know the gravity on earth is 10Nm*2 (Use the gravitational field strength provided by your school, I am assuming yours in 10Nm*2)
Therefore,
100N = mass × 10
mass= 100N/10
mass= 10 kg
Now, all we need are the moon's gravitational field strength and to apply this to the equation
weight = 10kg × (gravity on moon)
Using the Fundamental Equation of Wave, we have:
Letter B
it is just a matter of integration and using initial conditions since in general dv/dt = a it implies v = integral a dt
v(t)_x = integral a_{x}(t) dt = alpha t^3/3 + c the integration constant c can be found out since we know v(t)_x at t =0 is v_{0x} so substitute this in the equation to get v(t)_x = alpha t^3 / 3 + v_{0x}
similarly v(t)_y = integral a_{y}(t) dt = integral beta - gamma t dt = beta t - gamma t^2 / 2 + c this constant c use at t = 0 v(t)_y = v_{0y} v(t)_y = beta t - gamma t^2 / 2 + v_{0y}
so the velocity vector as a function of time vec{v}(t) in terms of components as[ alpha t^3 / 3 + v_{0x} , beta t - gamma t^2 / 2 + v_{0y} ]
similarly you should integrate to find position vector since dr/dt = v r = integral of v dt
r(t)_x = alpha t^4 / 12 + + v_{0x}t + c let us assume the initial position vector is at origin so x and y initial position vector is zero and hence c = 0 in both cases
r(t)_y = beta t^2/2 - gamma t^3/6 + v_{0y} t + c here c = 0 since it is at 0 when t = 0 we assume
r(t)_vec = [ r(t)_x , r(t)_y ] = [ alpha t^4 / 12 + + v_{0x}t , beta t^2/2 - gamma t^3/6 + v_{0y} t ]
Bulimia nervosa is similar in many ways because the individual is obsessed with their weight and wants to continuously lose weight to achieve their idea of a 'perfect' body shape. But with bulimia, there are periods of binging and purging. This means that the individual with bulimia may go through a period where they eat an excessive amount of food and then purge by using exercise, medications or vomiting to get rid of the food.
(I copied this from betterhelp.com)