Answer:
The magnitude of the lift force L = 92.12 kN
The required angle is ≅ 16.35°
Explanation:
From the given information:
mass of the airplane = 9010 kg
radius of the airplane R = 9.77 mi
period T = 0.129 hours = (0.129 × 3600) secs
= 464.4 secs
The angular speed can be determined by using the expression:
ω = 2π / T
ω = 2 π/ 464.4
ω = 0.01353 rad/sec
The direction 

θ = 16.35°
The magnitude of the lift force L = mg ÷ Cos(θ)
L = (9010 × 9.81) ÷ Cos(16.35)
L = 88388.1 ÷ 0.9596
L = 92109.32 N
L = 92.12 kN
It’s a vector quantity, which means it possesses both magnitude and direction. So the SI unit would be B)kg•m/s
Answer:
Common Examples of Imagery
Taste: The familiar tang of his grandmother's cranberry sauce reminded him of his youth. Sound: The concert was so loud that her ears rang for days afterward. Sight: The sunset was the most gorgeous they'd ever seen; the clouds were edged with pink and gold.
I hope it's helpful!
Answer:
V = 4.63 m/s
V = 11.31 m/s
Explanation:
Given,
The distance traveled by the bus, towards north, d = 2.5 km
= 2500 m
The time taken by the trip is, t = 9 min
= 540 s
The velocity of the bus,
V = d / t
= 2500 / 540
= 4.63 m/s
At another point, the bus travels at a constant speed of v = 18 m/s
Therefore the velocity becomes
V = (4.63 + 18)/2
= 11.31 m/s
Hence, the velocity of the bus, V = 11.31 m/s
Answer:
Frequency, f = 15 Hz
Explanation:
We have,
Speed of an ocean wave is 45 m/s
Wavelength of a wave is 3 m
It is required to find the frequency of an ocean wave.
Speed of a wave,
, f = frequency of ocean wave

So, the frequency of an ocean wave is 15 Hz.