The spring constant is 147 N/m
Given the mass of the block is 2.00 kg , the mass of the body is 300 g and the length of the spring is 2.00 cm
We need to find the spring constant
A spring is an object that can be deformed by a force and then return to its original shape after the force is removed.
The force required to stretch an elastic object such as a metal spring is directly proportional to the extension of the spring
We know that F = kx
300(9.8)= k (0.02)
k = 147.15 N/m
Rounding off to the nearest is 147N/m
The spring constant is 147N/m
Learn more about Hooke's law here
brainly.com/question/15365772
#SPJ4
The velocity of the pitcher at the given mass is 0.1 m/s.
The given parameters:
- <em>Mass of the pitcher, m₁ = 50 kg</em>
- <em>Mass of the baseball, m₂ = 0.15 kg</em>
- <em>Velocity of the ball, u₂ = 35 m/s</em>
<em />
Let the velocity of the pitcher = u₁
Apply the principle of conservation of linear momentum to determine the velocity of the pitcher as shown below;
m₁u₁ = m₂u₂

Thus, the velocity of the pitcher at the given mass is 0.1 m/s.
Learn more about conservation of linear momentum here: brainly.com/question/13589460
Answer:

Explanation:
Since the cardinal and ball have the same kinetic energy, it is possible to determine the ratio between speeds. (c for cardinal, b for baseball)



The ratio is obtained by multiplying each side by
:


The value of this ratio is:
