2. The mean is the average so it phase shifted up five points where as the range is the difference between the highest and lowest # which wouldn't change if all the numbers were adjusted.
9x=6, so the number is 2/3.
Given:
In triangle GHI, h = 300 inches, G=30° and H=29º.
To find:
The length of i.
Solution:
We have, G=30° and H=29º.
Using angle sum property, we get
![m\angle G+m\angle H+m\angle I=180^\circ](https://tex.z-dn.net/?f=m%5Cangle%20G%2Bm%5Cangle%20H%2Bm%5Cangle%20I%3D180%5E%5Ccirc)
![30^\circ+29^\circ+m\angle I=180^\circ](https://tex.z-dn.net/?f=30%5E%5Ccirc%2B29%5E%5Ccirc%2Bm%5Cangle%20I%3D180%5E%5Ccirc)
![59^\circ+m\angle I=180^\circ](https://tex.z-dn.net/?f=59%5E%5Ccirc%2Bm%5Cangle%20I%3D180%5E%5Ccirc)
![m\angle I=180^\circ-59^\circ](https://tex.z-dn.net/?f=m%5Cangle%20I%3D180%5E%5Ccirc-59%5E%5Ccirc)
![m\angle I=121^\circ](https://tex.z-dn.net/?f=m%5Cangle%20I%3D121%5E%5Ccirc)
According to Law of sines,
![\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}](https://tex.z-dn.net/?f=%5Cdfrac%7Ba%7D%7B%5Csin%20A%7D%3D%5Cdfrac%7Bb%7D%7B%5Csin%20B%7D%3D%5Cdfrac%7Bc%7D%7B%5Csin%20C%7D)
Using Law of sines, we get
![\dfrac{h}{\sin H}=\dfrac{i}{\sin I}](https://tex.z-dn.net/?f=%5Cdfrac%7Bh%7D%7B%5Csin%20H%7D%3D%5Cdfrac%7Bi%7D%7B%5Csin%20I%7D)
![\dfrac{300}{\sin 29^\circ}=\dfrac{i}{\sin 121^\circ}](https://tex.z-dn.net/?f=%5Cdfrac%7B300%7D%7B%5Csin%2029%5E%5Ccirc%7D%3D%5Cdfrac%7Bi%7D%7B%5Csin%20121%5E%5Ccirc%7D)
![\dfrac{300}{0.4848}=\dfrac{i}{0.8572}](https://tex.z-dn.net/?f=%5Cdfrac%7B300%7D%7B0.4848%7D%3D%5Cdfrac%7Bi%7D%7B0.8572%7D)
Multiply both sides by 0.8572.
![\dfrac{300}{0.4848}\times 0.8572=i](https://tex.z-dn.net/?f=%5Cdfrac%7B300%7D%7B0.4848%7D%5Ctimes%200.8572%3Di)
![530.44554=i](https://tex.z-dn.net/?f=530.44554%3Di)
![i\approx 530](https://tex.z-dn.net/?f=i%5Capprox%20530)
Therefore, the length of i is about 530 inches.
Solve for the first variable in one of the equations, then substitute the result into the other equation.
Y
=
2
y
/3
−
3
x
=
−
y
/3
+
7
Hope this helped!