Answer: Where the charged object is brought near but never contacted to the object being charged, conduction charging involves making the physical connection of the charged object to the neutral object. Because charging by conduction involves contact, it is often called charging by contact.
Real life example: A positively charged aluminum plate comes into contact with a neutral metal sphere
Explanation:
Answer:
- 144 V
Explanation:
A = (2, 3) m = 2 i + 3 j
B = (5, 7) m = 5 i + 7 j
Displacement vector = AB = B - A = (3 i + 4 j) m
Electric field, E = (4 i + 3 j ) N/C
V = - E . AB
V = - (4 i + 3 j) . (3 i + 4 j)
V = - (12 + 12) = - 144 V
Yes, ratio can be expressed in percentage.
Answer:
<em>The total potential (magnitude only) is 11045.45 V</em>
Explanation:
<u>Electric Potential
</u>
The total electric potential at location A is the sum of all four individual potentials produced by the charges, including the sign since the potential is a scalar magnitude that can be computed by

Where k is the Coulomb's constant, q is the charge, and r is the distance from the charge. Let's find the potential of the rightmost charge:

The potential of the leftmost charge is exactly the same as the above because the charges and distances are identical

The potential of the topmost charge is almost equal to the above computed, is only different in the sign:

The bottom charge has double distance and the same charge, thus the potential's magnitude is half the others':

The total electric potential in A is


The total potential (magnitude only) is 11045.45 V