Answer:
(1) 10^−2 m
Explanation:
The diameter of the tire of an automobile is generally expressed in centimetres; we can say that the diameter of a tire is generally about
d = 20 cm (20 centimetres)
Now we have to verify which option is closest to this value. To do that, we have to keep in mind the equivalence between metres and centimetres; in fact, we have:

This means that we can rewrite the diameter of the tire of a car as

By comparing it with the given options, we see that the closest option is
(1) 10^−2 m
which is therefore the correct answer.
We don't have much to go on.
The dimensions of D depend on the dimensions of N, n, and x, and we don't know what any of those stand for.
It might help if we had ever heard of 'diffastion', but we're striking out there too.
Answer:
Explanation:
is there more to the problem?
The closure temperature represents the point when isotopes are no longer free to move out of a crystal lattice.
Answer: Option C
<u>Explanation:</u>
The closure temperature can also be termed as blocking temperature. It is mostly used in radiometric dating. As the temperature decreases, below a certain point the isotopes may get freeze in their lattice positions. And there may be slowing of diffusion.
At the closure temperature, that rate of diffusion will be zero as the isotopes will be no longer free to move out of crystal lattice. So, this is termed as closure or blocking temperature. As the isotopes loose their ability to move, their concentration will remain fixed in their position leading to measurement of radiation dating.
Answer:
+9.8m/s^2
Explanation:
The rate of gravity of the object is constant thriughout the surface of the earth.
For falling object, the rate of gravity is positive since the body is coming down (falling)
The rate of gravity is negative if the body is going up
The constant value for acceleration due to gravity is 9.8m.s^2
Since the object is falling, hence the acceleration due to gravity is positive.
Rate of gravity working on the object will be +9.8m/s^2