Just to correct you - the speed of light is 3.0 x 10^5 km/sec and not 105 km/sec as given by you (maybe it was just a typing mistake from your end).
The average distance between earth and moon would be - 384,000 kms.
This is calculated by the formula -> Distance = Speed x Time.
Answer:
Explanation:
mass of string = .0125 / 9.8
= 1.275 x 10⁻³ kg
Length of string l = 1.5 m .
m = mass per unit length
= ( .1.275 / 1.5) x 10⁻³ kg/m
m = .85 x 10⁻³ kg/m
wave equation: y(x,t) = (8.50 mm)cos(172 rad/m x − 4830 rad/s t)
compare with equation of wave
y(x,t) = Acos(K x − ω t)
ω ( angular velocity ) = 4830 rad/s
k = 172 rad/m
Velocity = ω / k
= 4830/172 m /s
= 28.08 m /s
velocity of wave = 
28.08 = 
788.48 = W / .85 X 10⁻³
W = 670 x 10⁻³ N .
c ) wave length
wave length =2π / k
= 2 x 3.14 / 172
= .0365 m
no of wave lengths over whole length of string
= 1.5 / .0365
= 41
d )
equation for waves traveling down the string
= (8.50 mm)cos(172 rad/m x + 4830 rad/s t)
The answer is D because when the positive charged side touches the negative charged side it nullifys part of the positively charged side, basically subtraction from my understanding?
This problem must be solved using a sketch. I attached an illustration of the problem.
You must trace the ray that reflects from the top off the table to your eyes. This how eyesight works, light rays reflects off the objects into your eyes.
Law of reflection tells us that light ray reflects off the surface at the same angle in which it falls on it( i attached another illustration of this).
Now we can write tangens equations:

We solve for h:
<h2>It will take 0.125 seconds to reach the net.</h2>
Explanation:
Initial speed, u = 34 ft/s = 10.36 m/s
Acceleration, a = -9.81 m/s²
Displacement, s = Final height - Initial height = 8 - 4 = 4 ft = 1.22 m
We have equation of motion, s = ut + 0.5 at²
Substituting
s = ut + 0.5 at²
1.22 = 10.36 x t + 0.5 x -9.81 x t²
4.905t² - 10.36 t + 1.22 = 0
t = 1.99 s or t = 0.125 seconds
Minimum time is 0.125 seconds.
It will take 0.125 seconds to reach the net.