Answer:
Explanation:
Use the one-dimensional equation:
which says that the final velocity of a falling object is equal to its initial velocity times the acceleration of gravity times the time it takes to fall. We have the final velocity, -14.5 (negative because its direction is down and down is negative), initial velocity is 0 (because it was held still by someone before it was dropped), and acceleration is -9.8 (negative again, because direction is down while acceleration increases). Filling in:
-14.5 = 0 - 9.8t and
-14.5 = -9.8t so
t = 1.5 seconds
Answer:
12,46
Explanation:
esto se debe a que el número que está después del 5 en este caso 5 aumenta o eleva el valor aunque si es un número menor a 5 queda igua
Answer:
It shows that the gravitational force is directly proportional to the product of masses of two bodies and inversely proportional to the square of distance between them, So, as the mass of bodies increases, the gravitational force increases and with the increase of distance between them, the gravitational force decreases.
Explanation:
Answer:
K_b = 78 J
Explanation:
For this exercise we can use the conservation of energy relations
starting point. Lowest of the trajectory
Em₀ = K = ½ mv²
final point. When it is at tea = 50º
Em_f = K + U
Em_f = ½ m v_b² + m g h
where h is the height from the lowest point
h = L - L cos 50
Em_f = ½ m v_b² + mg L (1 - cos50)
energy be conserve
Em₀ = Em_f
½ mv² = ½ m v_b² + mg L (1 - cos50)
K_b = ½ m v_b² + mg L (1 - cos50)
let's calculate
K_b = ½ 2.0 6.0² + 2.0 9.8 6.0 (1 - cos50)
K_b = 36 +42.0
K_b = 78 J