The magnitude of the current in wire 3 is 2.4 A and in a direction pointing in the downward direction.
- The force per unit length between two parallel thin current-carrying
and
wires at distance ' r ' is given by
....(1) .
- If the current is flowing in both wires in the same direction, and the force between them will be the attractive force and if the current is flowing in opposite direction in wires then the force between them will be the repulsive force.
A schematic of the information provided in the question can be seen in the image attached below.
From the image, force on wire 2 due to wire 1 = force on wire 2 due to wire 3

Using equation (1) , we get

I₃ = 2.4 A and the current is pointing in the downward direction
Learn more about the magnitude and direction of forces here:
brainly.com/question/14879801?referrer=searchResults
#SPJ4
Answer:
Ur answer is Stationary Front
Explanation:
Stationary Front is when a cold air mass and a warm air mass but are at a standstill the boundary is called Stationary Front.
Answer:
D) 19.8 lbs
Explanation:
1kg in household measurement is equal to 35.274 ounces. 35.274*9=317.466 ounces.
1kg is also equal to 2.205 lbs. 9*2.205=19.8416
9 kg is also equal to 9000 grams, but grams are not a part of the household measurement system
a) 9000 grams. b) 9000 ounces. c) 19.8 ounces. d) 19.8 pounds.
This leaves us with 19.8lbs
Answer:
1 / 2 m v^2 = L m g (1 - cos θ)
This is the KE due to the pendulum falling from a 25 deg displacement
v^2 = 2 L g (1 - cos 25) = 2 * 2 * 9.8 (1 - .906) = 3.67 m^2/s^2
v = 1.92 m/s this is the speed due to an initial displacement of 25 deg
Its speed at the bottom would then be
1.92 + 1.2 = 3.12 m/s since it gains 1.92 m/s from its initial displacement