Answer:
140°
Explanation:
The law of reflection states that the angle of redlection equals to the angle of incidence.
When light rays hit surface at 20°, they also leave the surface at the same angle
Since the whole surface has 180° then subtracting these two angles from total angle gives the the angle between the incident and reflected rays.
180°-20°-20°=140°
The angle of incidence and reflection are equal hence 140/2=70°
The question needed the angle between the incident and reflected rays which is already calculated as 140°
Answer:
v = 2,425 m / s
Explanation:
A simple pendulum has anergy stored at the highest point of the path and this energy is conserved throughout the movement.
highest point
Em₀ = U = m g y
lowest point
= K = ½ m v²
Em₀ = Em_{f}
mg y = ½ m v²
v = √ 2gy
let's calculate
v = √ (2 9.8 0.3)
v = 2,425 m / s
Answer:
a = 0.7267
, acceleration is positive therefore the speed is increasing
Explanation:
The definition of acceleration is
a = dv / dt
they give us the function of speed
v = - (t-1) sin (t² / 2)
a = - sin (t²/2) - (t-1) cos (t²/2) 2t / 2
a = - sin (t²/2) - t (t-1) cos (t²/2)
the acceleration for t = 4 s
a = - sin (4²/2) - 4 (4-1) cos (4²/2)
a = -sin 8 - 12 cos 8
remember that the angles are in radians
a = 0.7267
the problem does not indicate the units, but to be correct they must be m/s²
We see that the acceleration is positive therefore the speed is increasing
Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting the sun in a path described as an ellipse. ... The resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances from every point on the curve to two other points is a constan