Answer:
Da=(1/4)Db
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
When s = Da, t = t

When s = Db, t = 2t

Dividing the two equations

Hence, Da=(1/4)Db
According to Newton's 3rd law, there will be equal and opposite force on the astronaut which is -6048 N
<h3>
What does Newton's third law say ?</h3>
The law state that in every action, there will be equal and opposite reaction.
Given that a rocket takes off from Earth's surface, accelerating straight up at 69.2 m/s2. We are to calculate the normal force (in N) acting on an astronaut of mass 87.4 kg, including his space suit.
Let us first calculate the force involved in the acceleration of the rocket by using the formula
F = ma
Where mass m = 87.4 kg, acceleration a = 69.2 m/s2
Substitute the two parameters into the formula
F = 87.4 x 69.2
F = 6048.08 N
According to the Newton's 3rd law, there will be equal and opposite force on the astronaut.
Therefore, the normal force acting on the astronaut is -6048 N approximately
Learn more about forces here: brainly.com/question/12970081
#SPJ1
Answer:
Explanation:
1) True. The stored energy (U) is proportional to the electric field strength (E). The electric field strength decreases when a dielectric is introduced hence inserting a dielectric decreases U.
2) False. From the formula
, capacitance is inversely proportional to distance hence if the distance is doubled, capacitance decreases.
3) False. As the distance between the electric field and the object increases, its electric field decreases.
4) False. If a dielectric is inserted, the plates are further separated. Q stays the same.
5) True. The electric field strength decreases when a dielectric is introduced and capacitance is inversely proportional to electric field hence Inserting a dielectric increases C
6) True. If a dielectric is inserted, the plates are further separated. Q stays the same.
7) True. When the distance is doubled, U increases