Answer:
N≡N bond
Explanation:
Bond energy (bond enthalpy) is a measure of the bond strength in the bond. It is defined as average value of bond dissociation energies in the gas-phase for all the bonds having same type with in same chemical species.
<u>The greater the bond energy, the greater is the amount of energy required to break the bond, the more stable is the bond.</u>
Thus, among the following bonds:
O=O 498 kJ/mol
N≡N 946 kJ/mol
C=C 614 kJ/mol
C=O 745 kJ/mol
C≡C 839 kJ/mol
<u>The greatest bond energy is of N≡N 946 kJ/mol and thats why it is the most stable.</u>
Phase unbalance causes three-phase motors to operate at temperatures higher than nameplate ratings and, therefore, the motor cannot deliver its rated horsepower.
<h3>What is an electric vehicle (EV)?</h3>
An EV stands for an electric vehicle. Electric vehicles (EVs) are autos that are powered totally or partially by electricity.
Electric cars are extremely cost-effective to run because they have fewer moving parts to maintain and use little to no fossil fuels (petrol or diesel).
Hence, three-phase motors operating with phase imbalance run at temperatures over nameplate limits, which prevents the motor from producing its rated horsepower.
.
To learn more about electric vehicles here,
brainly.com/question/27434548
#SPJ4
Answer:
3000N
Explanation:
divided to get answer
the force needed to accelerate the 1000kg car by 3m/s2 is 3000N
here we will use the momentum conservation
initial total momentum = final total momentum


now plug in all data here



so the final speed will be 7.94 m/s
<h3><u>Answer;</u></h3>
= 20.436 seconds
<h3><u>Explanation;</u></h3>
Speed = Distance × time
Therefore;
Time = Distance/speed
Distance = 7.50 m, speed = 0.367 m/s
Time = 7.50/0.367
<u>= 20.436 seconds </u>