Answer is: <span>concentration of NOCl is 3.52 M.
</span>
Balanced chemical reaction: 2NOCl(g) ⇄ 2NO(g) + Cl₂<span>(g).
Kc = 8.0.
</span>[NOCl] = 1.00 M; equilibrium concentration.
[NO] = x.
[Cl₂] = x/2; equilibrium concentration of chlorine.<span>
Kc = </span>[Cl₂] ·[NO]² / [NOCl].
8.00 = x/2 · x² / 1.
x³/2 = 8.
x = ∛16.
x = 2.52 M.
co(NOCl) = [NOCl] + x.
co(NOCl) = 1.00 M + 2.52 M.
co(NOCl) = 3.52 M; the initial concentration of NOCl.
Answer:
Different substances have different molecular masses. Thus, equal masses have different numbers of atoms, molecules, or moles. On the other hand, equal numbers of moles of different substances have different masses.
<h3><u>Answer;</u></h3>
<em>-49 °C</em>
<h3><u>Explanation and solution;</u></h3>
- Considering the fact that, the specific heat capacity of aluminum is 0.903 J/g x C, and the heat of vaporization of water at 25 C is 44.0 KJ/mol.
Moles water = 0.48 g / 18.02 g/mol
=0.0266 moles
<em>Heat lost by water</em> = 0.0266 mol x 44.0 kJ/mol
=1.17 kJ => 1170 J
<em>But heat lost =heat gained</em>
<em>Therefore;</em> Heat gained by aluminium = 1170 J
1170 = 55 x 0.903 ( T - 25) = 49.7 T - 1242
1170 + 1242 = 49.7 T
T = 48.5 °C ( 49 °C <em>at two significant figures)</em>
<em>Hence</em>, final temperature = 49 °C
the answer is C. Distance
hope this helps :)
Answer: 1) D. 2) C. 3) A. 4) C. 5) B. 6) B. 7) A. 8) D. 9) A. 10) C. 11) B.
Explanation: I really hope this helps