The velocity of pin B after rod AB has rotated through 90* is vb = 3.2549 m/s.
<h3>What is Potential and Kinetic energy?</h3>
Potential energy is the energy that is stored in any item or system as a result of its location or component arrangement. The environment outside of the object or system, such as air or height, has no impact on it. In contrast, kinetic energy refers to the energy of moving particles inside a system or an item.
mass of rod, mab = 2.4kg
mass of rod, mbc = 4kg
conservation of energy


potential energy at position 1,

V1 = 2.5 * 9.81 * 0.18 + 4 * 9.81 * 0.18
V1 = 11.30112
kinetic energy T1 at position 1 is zero
potential energy at position 2 is zero
K.E at position 2,


= 1/3 *4 * (0.36)²
=0.10368kg m²

= 1/12 *4 * (0.6)²
=0.12kg m²
on putting the values in above equation we get,
T₂ = 1.0667vb²
0 + 11.30112 = 1.0667vb² + 0
vb = 3.2549 m/s
to learn more about Kinetic and potential energy go to - brainly.com/question/18963960
#SPJ4
Answer:
(D. Gestalt psychology) , is the school of psychology that believes perception is more than the sum of its parts, it involves a whole pattern
.
This type of school of psychology studied how all components of sensations are assembled into one's perception
.
hope this helps :)
Answer:
2.68 hours
Explanation:
A.) Suppose the wind blows out from the west (with the air moving east). The pilot should then head her plane to northwest direction to move directly north.
B.) Given that plane flies at a speed of 102 km/h in still air. And the wind blows out from the west (with the air moving east) at a speed of 46 km/h.
The plan resultant speed can be calculated by using pythagorean theorem.
Resultant Speed = Sqrt( 102^2 + 46^2 )
Resultant Speed = Sqrt( 12520)
Resultant speed = 111.89 km/h
From the definition of speed,
Speed = distance/time
Where distance = 300 km
Substitute the resultant speed and the distance into the formula.
111.89 = 300/time
Time = 300/111.89
Time = 2.68 hours
Therefore, it take her 2.68 hours to reach a point 300 km directly north of her srarting point
Answer:
4.29 millimeters
Explanation:
Bats emit ultrasound waves: in air, ultrasound waves travel at a speed of

The frequency of the waves emitted by this bat is:

Therefore we can find the wavelength of the wave emitted by the bat by using the relationship between speed, frequency and wavelength:
