<h2>
Answer: high pressures</h2>
The Ideal Gas equation is:
Where:
is the pressure of the gas
the number of moles of gas
is the gas constant
is the absolute temperature of the gas in Kelvin.
According to this law, molecules in gaseous state do not exert any force among them (attraction or repulsion) and the volume of these molecules is small, therefore negligible in comparison with the volume of the container that contains them.
Now, real gases can behave approximately to an ideal gas, under the conditions described above.
However, when <u>temperature is low</u> these gases deviate from the ideal gas behavior, because the molecules move slowly, allowing the repulsion or attraction forces to take effect.
The same happens at <u>high pressures</u>, because the volume of molecules is no longer negligible.
By using the orbital period equation we will find that the orbital radius is r = 4.29*10^11 m
<h3>
What is the orbital period?</h3>
This would be the time that a given body does a complete revolution in its orbit.
It can be written as:

Where:
- π = 3.14
- G is the gravitational constant = 6.67*10^(-11) m^3/(kg*s^2)
- M is the mass of the sun = 1.989*10^30 kg
- r is the radius, which we want to find.
Rewriting the equation for the radius we get:
![T = \sqrt{\frac{4*\pi ^2*r^3}{G*M} }\\\\r = \sqrt[3]{ \frac{T^2*G*M}{4*\pi ^2} }](https://tex.z-dn.net/?f=T%20%3D%20%5Csqrt%7B%5Cfrac%7B4%2A%5Cpi%20%5E2%2Ar%5E3%7D%7BG%2AM%7D%20%7D%5C%5C%5C%5Cr%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7BT%5E2%2AG%2AM%7D%7B4%2A%5Cpi%20%5E2%7D%20%7D)
Where T = 7.5 years = 7.5*(3.154*10^7 s) = 2.3655*10^8 s
Replacing the values in the equation we get:
![r = \sqrt[3]{ \frac{(2.3655*10^8 s)^2*(6.67*10^{-11} m^3/(kg*s^2))*(1.989*10^{30} kg)}{4*3.14 ^2} } = 4.29*10^{11 }m](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B%282.3655%2A10%5E8%20s%29%5E2%2A%286.67%2A10%5E%7B-11%7D%20m%5E3%2F%28kg%2As%5E2%29%29%2A%281.989%2A10%5E%7B30%7D%20kg%29%7D%7B4%2A3.14%20%5E2%7D%20%7D%20%3D%204.29%2A10%5E%7B11%20%7Dm)
So the orbital radius is 4.29*10^11 m
If you want to learn more about orbits, you can read:
brainly.com/question/11996385
Oxyles i think this suite Oxyles what do you think.
Answer:
the major process of water cycle are :
- Evaporation
- Condensation
- Precipitation
hope it helps!
Answer:
The amount of force applied to his body is 1944.44 N
<em>The chances of the person dying is very high owing to the high impact force with which the person would experience when he or she lands on the asphalt road due to the jump out of the moving car.</em>
Explanation:
We all know that,
F = Ma where,
F = Force
M = weight of the person
a = acceleration or velocity of the moving car
Therefore;
F = { 70 x (100 x 1000) } / [3600]
= [7 000 000] / 3600
= <u>1944.44 N</u>