fluid friction<span> occurs when an object moves through a liquid or gas. the force needed to overcome </span>fluid friction <span>is usually less then that needed to overcome </span>sliding friction<span>. the </span>fluid<span> keeps the surface from making direct contact and thus </span>reducing friction<span>.</span>
<span>3.92 m/s^2
Assuming that the local gravitational acceleration is 9.8 m/s^2, then the maximum acceleration that the truck can have is the coefficient of static friction multiplied by the local gravitational acceleration, so
0.4 * 9.8 m/s^2 = 3.92 m/s^2
If you want the more complicated answer, the normal force that the crate exerts is it's mass times the local gravitational acceleration, so
20.0 kg * 9.8 m/s^2 = 196 kg*m/s^2 = 196 N
Multiply by the coefficient of static friction, giving
196 N * 0.4 = 78.4 N
So we need to apply 78.4 N of force to start the crate moving. Let's divide by the crate's mass
78.4 N / 20.0 kg
= 78.4 kg*m/s^2 / 20.0 kg
= 3.92 m/s^2
And you get the same result.</span>
Answer:
The value of tension on the cable T = 1065.6 N
Explanation:
Mass = 888 kg
Initial velocity ( u )= 0.8 
Final velocity ( V ) = 0
Distance traveled before come to rest = 0.2667 m
Now use third law of motion
=
- 2 a s
Put all the values in above formula we get,
⇒ 0 =
- 2 × a ×0.2667
⇒ a = 1.2 
This is the deceleration of the box.
Tension in the cable is given by T = F = m × a
Put all the values in above formula we get,
T = 888 × 1.2
T = 1065.6 N
This is the value of tension on the cable.
Here is the energy that is left after the quantity of energy is transformed: 750 j of electrical energy is changed into 400 j of kinetic or mechanical energy, which is then turned into 0.32 j of efficient energy.
To run the fan, electrical energy is utilized.
Here, under the specified circumstances, 750 J of electrical energy is utilized to operate the fan, which is transformed into 400 J of kinetic energy. As a result, 350 J of energy is wasted due to various frictional and resistive losses.
Therefore, we may conclude that only 400 J of the 750 J available energy is used to power the fan, with the remaining energy being wasted as a result of friction.
Additionally, we can state that this fan's effectiveness will be
n = Useful ÷ Total
n = 400 ÷ 750
n = 8 ÷ 25
n = 0.32
Learn more about energy at
brainly.com/question/15915007?referrer=searchResults
#SPJ4
The presence of helium gas indicates the radioactive sample is most likely decaying by α-decay, or alpha decay. α-decay is the type of radioactive decay in which an atomic nucleus emits α particles. α particles are Helium nuclei. So the correct answer would be α-decay.