1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frez [133]
3 years ago
14

A wave has a wavelength of 9 mm and a frequency of 14 hertz. What is its speed?

Physics
1 answer:
lesantik [10]3 years ago
5 0
Wavespeed = frequency x wavelength
= 14 x 9
= 126 mm/s
= 0.126 m/s
You might be interested in
One block rests upon a horizontal surface. A second identical block rests upon the first one. The coefficient of static friction
goblinko [34]

Answer:

The magnitud of the force is 124.8N.

Explanation:

First we have to find the value of the static friction coefficient, when the external force F is applied to upper block (i will call it A Block) we have a free body diagram as the one shown in the figure i attached, so since this block has no aceleration in any direction the force F should be equal to the friction force between A and B block, one we noticed this we can use the equation for the Friction force to find the coefficient:

0=F-FrictionAB

F=FrictionAB=Nab*μs

and again, since the block has no acceleration the normal between A and B block should be equal to the weigth of the first block, so we have:

0=Nab-W

Nab=W=mg

replacing this we have:

F=μs*Nab=μs*mg=41.6N

and  μs=41.6N/(mg)

now it's time to see the free body diagram for the b block, if we now apply the F force to the B block the diagram should look like in the figure.

the color of the arrow gives you an idea of where the force comes from, the blue ones comes from the B block, the red ones from the A block and the brown ones from the ground.

now for the B block you can see two friction forces, one for the ground and one for the A block, both of these directed bacwards, and two normal forces, again one for the ground and one for the A block but the normal force for the A block is aiming downwards.

again we use the fact that the block is not accelerating in any direction so the sum of the forces in x and y direction have to be 0, so:

F-Friction1(ground)-Friction2(AB)=0

This is the new external F force that we are looking for:

F=Friction1(ground)+Friction2(AB)

we know Friction2(AB) because we found that in the previous block so:

F=Friction1(ground)+mg*μs

for the other friction we have to use the equation:

Friction(ground)=N(ground)*μs

from y axis we have:

N(ground)-w-Normal(AB)=0

N(ground)=w+Normal(AB)

we found the value of Normal(AB) with the previous block so:

N(ground)=mg+mg=2mg

and:

Friction(ground)=2mg*μs

F=Friction(ground)+mg*μs

F=2mg*μs+μs*mg=3mg*μs

and since: μs*mg=41.6N

the new F force would be:

F=3mg*μs=41.6*3=124.8N

4 0
3 years ago
When two adjacent lights blink on and off in quick succession, we perceive a single light moving back and forth between them. th
makkiz [27]
This is called the Phi Phenomenon.
This is an illusion of movement created when two or more adjacent lights blink on and off in quick succession; when two adjacent stationary lights blink on and off in quick succession; we perceive a single light moving back and forth between them. It is an optical illusion of perceiving a series of still images, when viewed in rapid succession, as continuous motion. 
5 0
3 years ago
Help with 3 please! I will give brainliest!
rusak2 [61]
The answer is point b because vertical velocity is zero at the maximum height
8 0
3 years ago
) Water falls from a height of 60m at the rate of 15kg/s to operate a turbine. The losses due to frictional force are 10% of ene
Angelina_Jolie [31]

Answer:

8100W

Explanation:

Let g = 10m/s2

As water is falling from 60m high, its potential energy from 60m high would convert to power. So the rate of change in potential energy is

P = \dot{E} = \dot{m}gh = 15*10*60 = 9000 J/s or 9000W

Since 10% of this is lost to friction, we take the remaining 90 %

P = 9000*90% = 8100 W

3 0
3 years ago
2 objects have a total momentum of 400kg m/s, they collide. Object A’s mass is5kg & object B’s mass is 11kg. After the colli
ss7ja [257]

Answer:

Explanation:

We shall apply law of conservation of momentum .

Momentum before collision = momentum after collision .

Momentum before collision = 400 kg m/s

Momentum after collision = 5  x v + 11 x 15

where v is velocity of A after the collision .

5  x v + 11 x 15 = 400

5 v = 400 - 165

5v = 235

v = 47 m /s .

3 0
3 years ago
Other questions:
  • PLEASE THINK ABOUT THIS AND EXPLAIN FULLY :)
    5·1 answer
  • Identify four processes in which matter and energy cycle earth
    6·1 answer
  • Why is it possible to throw a 0.145 kg baseball much further than a 7 kg bowling ball?
    13·1 answer
  • A 139 kg physics professor has fallen into the Grand Canyon. Luckily, he managed to grab a branch and is now hanging 89 m below
    15·1 answer
  • A 20 m high filled water tank develops a 0.50 cm hole in the vertical wall near the base. With what speed does the water shoot o
    8·1 answer
  • Technician A says that a MAF sensor is a high-authority sensor and is responsible for determining the fuel needs of the engine b
    7·1 answer
  • What other theory does the author compare to the Big Bang to?
    6·1 answer
  • What is the best explanation for seasons?
    7·2 answers
  • How to correct dimensions of <br><br>capillary rise of liquid in a tube​
    15·1 answer
  • A vehicle of mass 100kg has a kinetic energy of 5000 J at an instant. The velocity at that instant is​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!