Answer:
The displacement was 320 meters.
Explanation:
Assuming projectile motion and zero initial speed (i.e., the object was dropped, not thrown down), you can calculate the displacement using the kinematic equation:

The displacement was 320 meters.
The magnitude of the magnetic moment due to the electron's motion is
.
<h3>
What is magnetic moment?</h3>
The magnetic pull and direction of a magnet or other object that produces a magnetic field are referred to as the magnetic moment in electromagnetism. Things that have magnetic moments include electromagnets, permanent magnets, various compounds, elementary particles like electrons, and a number of celestial objects (such as many planets, some moons, stars, etc).
The term "magnetic moment" really refers to the magnetic dipole moment of a system, which is the portion of the magnetic moment that can be represented by an equivalent magnetic dipole or a pair of magnetic north and south poles that are only very slightly apart. The magnetic dipole component is adequate for sufficiently small magnets or over sufficiently large distances.
Calculations:
radius= 
velocity=
Working formula, M=N/A


=


=
M=
=
To learn more about magnetic moment ,visit:
brainly.com/question/14298729
#SPJ4
Answer:
A ratio of equivalent units
Explanation:
A conversion factor is a ratio of equivalent units and depends on which units are to be converted.
For example we want to convert 275 [mm] to inches, so we have to find the right conversion factor to allow us to work that conversion.
275 [mm] = inches = ?
![275 [mm] * \frac{1in}{25.4mm} = 10.82 [in]](https://tex.z-dn.net/?f=275%20%5Bmm%5D%20%2A%20%5Cfrac%7B1in%7D%7B25.4mm%7D%20%3D%2010.82%20%5Bin%5D)
In this case the ratio is 1/25.4 = 0.039 [in/mm]
Answer:
B
endothermic: heat taking in
exothermic: heat given out