To solve this problem we will apply the concepts related to Newton's second law that relates force as the product between acceleration and mass. From there, we will get the acceleration. Finally, through the cinematic equations of motion we will find the time required by the object.
If the Force (F) is 42N on an object of mass (m) of 83000kg we have that the acceleration would be by Newton's second law.
Replacing,
The total speed change
we have that the value is 0.71m/s
If we know that acceleration is the change of speed in a fraction of time,
We have that,
Therefore the Rocket should be fired around to 1403.16s
Answer: Macroscoptic Output
Explanation:
Answers to the rest:
1. B) macroscopic outputs.
2.A) a microscopic change creating a macroscopic output
3.B) Because the energy levels of the electrons in different metals are usually not the same, different metals usually emit different colors of visible light.
4.A) Heat is applied to a solid, causing its molecules to move quickly.
5.A) strontium, sodium, copper, potassium
<h3><u>Answer</u>;</h3>
C. An object can have acceleration with negative velocity.
<h3><u>Explanation</u>;</h3>
- Acceleration is a measure of the change in velocity over time. The change in velocity is measured in meter per second (m/s), and time interval is measured in second (s).
- Therefore, acceleration measures the change in meters per second every second [(m/s)/s], namely meters per second per second or meters per second squared (m/s2).
- If an object has zero acceleration, its velocity doesn’t have to be zero. Acceleration is a measure of the change in velocity over time. Zero acceleration means there is no change in velocity over time, namely constant velocity.
Answer: Aptenodytes forsteri
Explanation:
Answer:
0 111.0N be cause the rest do not add up