Answer:
C
Explanation:
It says is it a good idea the person so 1 person can say no and the other one can say yes so it is asks for a opinion
Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m
Answer:
a) b = -5
b) slope = 3/2
Explanation:
a) The equation of a line is given as y = mx + b, where m is the slope of the line and b is the intercept on the y axis.
Given that y = 3x + b and it passes through the point (2, 1). Hence when x = 2, y = 1. Therefore, substituting for x and y:
1 = 3(2) + b
1 = 6 + b
b = 1 - 6
b = -5
b) The equation of a line passing through two points (
) and
is given by:

The equation of the line passing through the two points (0,3) and (4,9) is:

Comparing y = (3/2)x + 3 with y = mx + b, the slope (m) is 3/2
Answer:
55,42 J
Explanation:
Since the height of the room is 3.45 m (distance between the floor and the ceiling) the difference between this value and the length of the rope 1.19 m; it will be equal to (3.45-1.19) =2.26 m. If we take as a reference point (Ep=0) the floor of the room, then the potential energy will be equal to Ep = M * g * h, replacing values in this equation (2.5 kg * 9.81 m/s2 * 2.26 m) will be 55,42 (N * m) or Jules.
Answer:
Explanation:
Using Pascal laws, which states that pressure are the input equals the pressure at the output.
Pressure is given as force/area
P1=P2
Then,
F1/A1=F2/A2
Cross multiply
F1A2=F2A1
Given that
Ae=0.5m² area of effort
Al=5m² area of load
Fl=? Force if load
Fe= 100N. Force of effort
Then applying pascal
Fl/Al=Fe/Ae
Fl/5=100/0.5
FL/5=200
Fl=200×5
Fl=1000N
The first safety load is 1000N