Answer:
666.67 kg is the mass of a car.
Explanation:
Momentum is defined as amount of motion possessed by the the moving body. It is mathematically calculated by multiplying mass into velocity by which object is moving.

Mass of the car = m =?
Velocity of the car = v = 15.0 m/s
Momentum of the car = P = 10,000.00 kgm/s


666.67 kg is the mass of a car.
Answer:
The molar solubility of YF₃ is 4.23 × 10⁻⁶ M.
Explanation:
In order to calculate the molar solubility of YF₃ we will use an ICE chart. We identify 3 stages: Initial, Change and Equilibrium and we complete each row with the concentration of change of concentration. Let's consider the solubilization of YF₃.
YF₃(s) ⇄ Y³⁺(aq) + 3 F⁻(aq)
I 0 0
C +S +3S
E S 3S
The solubility product (Ksp) is:
Ksp = [Y³⁺].[F⁻]³= S . (3S)³ = 27 S⁴
![S=\sqrt[4]{Ksp/27} =\sqrt[4]{8.62 \times 10^{-21} /27}=4.23 \times 10^{-6}M](https://tex.z-dn.net/?f=S%3D%5Csqrt%5B4%5D%7BKsp%2F27%7D%20%3D%5Csqrt%5B4%5D%7B8.62%20%5Ctimes%2010%5E%7B-21%7D%20%20%2F27%7D%3D4.23%20%5Ctimes%2010%5E%7B-6%7DM)
There is an increase in the number of collisions between particles and the walls of the container<span>. b. There is an increase in the </span>temperature of the gas. If<span> the volume of a </span>container<span> of </span>gas<span> is reduced, what will </span>happen to the pressure inside<span> the </span>container
Answer:
Antibiotic resistance happens when the germs no longer respond to the antibiotics designed to kill them. That means the germs are not killed and continue to grow. It does not mean our body is resistant to antibiotics.