There is a displacement. Just because the ball is thrown up,
and not crossways, doesn't mean its location is not moving. Remember, positive
displacement is together a displacement in the direction east, right, and up.
The velocity is the distance over time. To compute that, you must look how high
the ball moved before falling back down. Acceleration is expected to be
constant at 9.80m/s^2. That is the force of gravity. But remember that you are disregarding
air friction when you are computing the acceleration.
Answer:
Approximately
.
Explanation:
It is given that
and
are connected in a circuit in parallel.
Assume that this circuit is powered with a direct current power supply of voltage
.
Since
and
are connected in parallel, the voltage across the two resistors would both be
. Thus, the current going through the two resistors would be
and
, respectively.
Also because the two resistors are connected in parallel, the total current in this circuit would be the sum of the current in each resistor:
.
In other words, if the voltage across this circuit is
, the total current in this circuit would be
. The (equivalent) resistance
of this circuit would be:
.
Given that
and
:
.
A peak = A Rms x Sq root 2
Therefore 3.6 x sq root of 2
A peak = 5.09
Answer:
Solution:
we have given the equation of motion is x(t)=8sint [where t in seconds and x in centimeter]
Position, velocity and acceleration are all based on the equation of motion.
The equation represents the position. The first derivative gives the velocity and the 2nd derivative gives the acceleration.
x(t)=8sint
x'(t)=8cost
x"(t)=-8sint
now at time t=2pi/3,
position, x(t)=8sin(2pi/3)=4*squart(3)cm.
velocity, x'(t)=8cos(2pi/3)==4cm/s
acceleration, x"(t)==8sin(2pi/3)=-4cm/s^2
so at present the direction is in y-axis.
Answer:
2.521 (A); 14.0924 (V)
Explanation:
more info in the attachment, the answers are marked with red colour.