Answer:
11.23%
Explanation:
Lets take
Speed of man in still water =u= 1.73 m/s
Speed of flow of water = v=0.52 m/s
When swims in downward direction then speed of man = u + v
When swims in upward direction then speed of man = u - v
Lets time taken by man when he swims in downward direction is
and when he swims in downward direction is
Lets distance is d and it will be remain constant in both the case




Time taken in still water
2 d= t x 1.73
t=1.15 x d sec


total time in current = 0.82 +0.44 d=1.26 d sec
So the percentage time

Percentage time =11.32%
So it will take 11.32% more time as compare to still current.
The answer is A because it gives you a straight line which would make it easy for you go just go to end fast as a car .
Answer: Objective Observations
Explanation: The first step in the Scientific Method is to make objective observations. These observations are based on specific events that have already happened and can be verified by others as true or false
Answer:

Explanation:
given,
train travels due south at = 24 m/s
rain blown toward south
path of raindrop = 70° with vertical
so,
now,






Answer:
Explanation:
Conservation of momentum is used to solve
Unfortunately we have a missing piece of information such as the initial velocity of the unknown mass train.
If we ASSUME that the second train is at rest
5000(100) + m(0) = 5000(50) + m(50)
which means m = 5000 kg
However, I'll show you the importance of knowing that initial velocity by finding it assuming the other answers are valid
if m = 15000 kg
5000(100) + 15000(v₀) = (5000 + 15000)(50)
v₀ = 33 ⅓ m/s
if m = 10000 kg
5000(100) + 10000(v₀) = (5000 + 10000)(50)
v₀ = 25 m/s
if m = 8000 kg
5000(100) + 8000(v₀) = (5000 + 8000)(50)
v₀ = 18.75 m/s
So you can see why I had to assume an initial velocity. Any of the masses could work if the initial velocity is chosen correctly.