Answer:
<h2>480</h2>
Explanation:
<h2>R=120÷0.25</h2><h2>R=480 ohms </h2>
because the unit for resistance is in ohms
Answer:
deductive reasoning usually follows steps .
- That is, how we predict what the observations should be if the theory were correct
Answer:
s = 3 m
Explanation:
Let t be the time the accelerating car starts.
Let's assume the vehicles are point masses so that "passing" takes no time.
the position of the constant velocity and accelerating vehicles are
s = vt = 40(t + 2) cm
s = ½at² = ½(20)(t)² cm
they pass when their distance is the same
½(20)(t)² = 40(t + 2)
10t² = 40t + 80
0 = 10t² - 40t - 80
0 = t² - 4t - 8
t = (4±√(4² - 4(1)(-8))) / 2(1)
t = (4± 6.928) / 2 ignore the negative time as it has not occurred yet.
t = 5.464 s
s = 40(5.464 + 2) = 298.564 cm
300 cm when rounded to the single significant digit of the question numerals.
Answer:
t = 2.2 s
Explanation:
Given that,
A person observes a firework display for A safe distance of 0.750 km.
d = 750 m
The speed of sound in air, v = 340 m/s
We need to find the between the person see and hear a firework explosion. let it is t. So, using the formula of speed.
So, the required time is 2.2 seconds.
Answer: The ball (option A)
Explanation: change in momentum is defined by the formulae m(v - u) where m = mass of object, v = final velocity and u = initial velocity.
For the ball, it hits the ground and bounces back with the same speed, that's final velocity equals initials (v = - u)
Change in momentum = m( -u- u) = m(-2u) = m(-2u) = -2mu
For the clay, it final velocity is zero since it sticks to the floor, hence (v =0)
m(v - u) = m(0 - u) = - mu.
-2mu (change in momentum from the ball) is greater than - mu ( change in momentum of clay)