Answer:
0.169
Explanation:
Let's consider the following reaction.
A(g) + 2B(g) ⇄ C(g) + D(g)
We can find the pressures at equilibrium using an ICE chart.
A(g) + 2 B(g) ⇄ C(g) + D(g)
I 1.00 1.00 0 0
C -x -2x +x +x
E 1.00-x 1.00-2x x x
The pressure at equilibrium of C is 0.211 atm, so x = 0.211.
The pressures at equilibrium are:
pA = 1.00-x = 1.00-0.211 = 0.789 atm
pB = 1.00-2x = 1.00-2(0.211) = 0.578 atm
pC = x = 0.211 atm
pD = x = 0.211 atm
The pressure equilibrium constant (Kp) is:
Kp = pC × pD / pA × pB²
Kp = 0.211 × 0.211 / 0.789 × 0.578²
Kp = 0.169
Answer:
<em><u>Intermolecular forces determine bulk properties, such as the melting points of solids and the boiling points of liquids. Liquids boil when the molecules have enough thermal energy to overcome the intermolecular attractive forces that hold them together, thereby forming bubbles of vapor within the liquid.</u></em>
Mass number is the number of protons and neutrons in an atom, and it tells us about the mass of the atom in amu, or atomic mass units. Atomic mass is the average mass of all the isotopes of a certain type. It is a weighted average that takes into account the abundances of all of the different isotopes
hope this helps :)
Answer:
Yes, the investigations will reach similar conclusions about the reactivity of H2 and Cl2
Explanation:
1. The law of multiple proportions says that when elements form compounds, the proportions of the elements in those chemical compounds can be expressed in small whole number ratios. This means that regardless of whether 1000 times more of the products are used, the reactivity of the products is established by the chemical reaction
2. The law of multiple proportions is an extension of the law of definite composition, which states that compounds will consist of defined ratios of elements.
3. A reaction with more reactants will need more care because more products are produced, which can be toxic
4. H2 and Cl2 reactivity does not depend on the quantities but the chemical properties of each compound
Answer:
see explanation
Explanation:
To determine limiting reactant divide mole quantities of reactants by the respective coefficient in the balanced equation. The smaller value is the limiting reactant.
P₄ + 5O₂ => 2P₂O₅
12/1 = 12 15/5 = 3
O₂ is the limiting reactant. P₄ will be in excess when rxn stops.