Answer:
C2HBr
Explanation:
The empirical formula is like the simpliest form so divide all by 3 and get the above formula.
Answer:
Here
Explanation:
Chemists need the mole concept to bridge the gap between the microscopic world of atoms to the macroscopic world of humans. As you know, the molecular level consists of particles that are invisible to us.
Answer:
It will take 188.06 hours for the concentration of A to decrease 10.0% of its original concentration.
Explanation:
A → B
Initial concentration of the reactant = x
Final concentration of reactant = 10% of x = 0.1 x
Time taken by the sample, t = ?
Formula used :

where,
= initial concentration of reactant
A = concentration of reactant left after the time, (t)
= half life of the first order conversion = 56.6 hour
= rate constant

Now put all the given values in this formula, we get

t = 188.06 hour
It will take 188.06 hours for the concentration of A to decrease 10.0% of its original concentration.
Answer:
Explanation:
AgCl ⇄ Ag⁺ + Cl⁻
m m m
If x mole of AgCl be dissolved in one litre .
[ Ag⁺ ] [ Cl⁻ ] = 1.6 x 10⁻¹⁰
m² = 1.6 x 10⁻¹⁰
m = 1.26 x 10⁻⁵ moles
So solubility of AgCl is 1.26 x 10⁻⁵ moles / L
Answer:
so 0.15 moles X 22.4 dm3/mole=3.36 dm3. Next we find the moles of hexane combusted, and then the moles of CO2. Finally, we find the volume of CO2 using the fact that at STP, 1 mole of gas = 22.4 dm3.