Answer: The value of
for chloroform is
when 0.793 moles of solute in 0.758 kg changes the boiling point by 3.80 °C.
Explanation:
Given: Moles of solute = 0.793 mol
Mass of solvent = 0.758

As molality is the number of moles of solute present in kg of solvent. Hence, molality of given solution is calculated as follows.

Now, the values of
is calculated as follows.

where,
i = Van't Hoff factor = 1 (for chloroform)
m = molality
= molal boiling point elevation constant
Substitute the values into above formula as follows.

Thus, we can conclude that the value of
for chloroform is
when 0.793 moles of solute in 0.758 kg changes the boiling point by 3.80 °C.
Answer:
1. negative
2. positive
3. neutral
Explanation:
Ok so it looks like they are asking for the charge (positive, negative, or neutral) of each thing
So for 1, it would be negative, because it's pointing to an electron. Electrons always have a negative charge.
So for 2, it would be positive, because it's pointing to a proton. Protons always have a positive charge
So for 3, it would be neutral, because it's pointing to a neutron. Neutrons always have a neutral charge.
A molecule of hydrogen is formed by two hydrogen atoms, that is a fact.
How does it work? When two atoms, known as "diatomic" pair with another in a bond known non-polar covalent bonds. Where they equally share electrons. A Hydrogen atoms needs 1 more electrons to fill its first shell fully and have a full valence shell. So if two H's share their electrons, they'll both have a full V-Shell!
That's the basics of both the H-H bond and all the other diatomic bonds as well.