1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kupik [55]
3 years ago
14

As a woman walks, her entire weight is momentarily placed on one heel of her high-heeled shoes. Calculate the pressure exerted o

n the floor by the heel if it has an area of 1.43 cm2 and the woman's mass is 60.5 kg. Express the pressure in pascals. (In the early days of commercial flight, women were not allowed to wear high-heeled shoes because aircraft floors were too thin to withstand such large pressures.)
Physics
1 answer:
Soloha48 [4]3 years ago
3 0

Answer:

4.15 x 10^6 N

Explanation:

Area, A = 1.43 cm^2 = 1.43 x 10^-4 m^2

mass, m = 60.5 kg

Weight, F = m g = 60.5 x 9.8 = 592.9 N

Pressure = Force / Area

P = Weight / Area

P = 592.9 / (1.43 x 10^-4)

P = 4.15 x 10^6 N

You might be interested in
A 23.3-kg mass is attached to one end of a horizontal spring, with the other end of the spring fixed to a wall. The mass is pull
sdas [7]

In spring mass system we know that angular frequency is given as

\omega = 2\pi f

f = 8.38 Hz

\omega = 2\pi(8.38)

\omega = 52.65  rad/s

now we know that speed of SHM at its extreme position is given by

v = A\omega

here we know that

A = 17.5 cm

v = 0.175 (52.65)

v = 9.21 m/s

so maximum speed is 9.21 m/s

7 0
3 years ago
At a particular instant the magnitude of the momentum of a planet is 2.05 × 10^29 kg·m/s, and the force exerted on it by the sta
Evgesh-ka [11]
727.5256266 AWNSERrRrrRr
3 0
2 years ago
Calculate the orbital period for Jupiter's moon Io, which orbits 4.22×10^5km from the planet's center (M=1.9×10^27kg) .
Verdich [7]

According to the <u>Third Kepler’s Law of Planetary motion</u> “<em>The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.</em>



In other words, this law states a relation between the orbital period T of a body (moon, planet, satellite) orbiting a greater body in space with the size a of its orbit.



This Law is originally expressed as follows:



<h2>T^{2} =\frac{4\pi^{2}}{GM}a^{3}    (1) </h2>

Where;


G is the Gravitational Constant and its value is 6.674(10^{-11})\frac{m^{3}}{kgs^{2}}



M=1.9(10^{27})kg is the mass of Jupiter


a=4.22(10^{5})km=4.22(10^{8})m  is the semimajor axis of the orbit Io describes around Jupiter (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)



If we want to find the period, we have to express equation (1) as written below and substitute all the values:



<h2>T=\sqrt{\frac{4\pi^{2}}{GM}a^{3}}    (2) </h2>

T=\sqrt{\frac{4\pi^{2}}{6.674(10^{-11})\frac{m^{3}}{kgs^{2}}1.9(10^{27})kg}(4.22(10^{8})m)^{3}}    



T=\sqrt{\frac{2.966(10^{27})m^{3}}{1.268(10^{17})m^{3}/s^{2}}}    



T=\sqrt{2.339(10^{10})s^{2}}    



Then:


<h2>T=152938.0934s    (3) </h2>

Which is the same as:



<h2>T=42.482h     </h2>

Therefore, the answer is:



The orbital period of Io is 42.482 h



7 0
3 years ago
When driving straight down the highway at a constant velocity you have to give the engine a little gas (which means an added ext
Alona [7]

Answer:

Explanation:

This does not violate Newton's 1st law because the net force would still be 0 in order to produce uniform motion (aka constant velocity). The other forces acting on the vehicles is air resistance which is non-zero. So we need car internal force to counter balance this force, which require extra gas for the car.

7 0
3 years ago
Object a travels in the +x-direction before hitting a stationary object
Leto [7]
The object’s resultant angle of motion with the +x-axis after the collision is 47°

<span>From object A:
 
1) x-momentum is 5.7 × 10^4 kilogram meters/second,
2) y-momentum is 6.2 × 10^4 kilogram meters/second.
 
Now, we know, tan</span>Ф = \frac{y}{x}

⇒tanФ = \frac{6.2 × 10^4 }{5.7 × 10^4}

⇒tanФ = 1.088

⇒ Ф = tan^{-1} 1.088 
         =  47.4 ≈ 47

8 0
3 years ago
Read 2 more answers
Other questions:
  • The air pressure inside the tube of a car tire is 430 kPa at a temperature of 13.0 °C. What is the pressure of the air, if the t
    5·1 answer
  • What kind of image does the lens in a camera produce?
    14·1 answer
  • In a roller coaster, a car has X joules of potential energy when it is resting at the top of the hill. The car moves downhill an
    11·1 answer
  • A beam of hydrogen molecules (h2) is directed toward a wall, at an angle of 55 with the normal to the wall. each molecule in the
    5·1 answer
  • You are designing a hydraulic lift for a machine shop. The average mass of a car it needs to lift is about 1500 kg. You wish to
    6·1 answer
  • A transfer of heat within a liquid or gas that involves warm particles moving in currents is
    5·1 answer
  • How far will a bird have traveled in 13 seconds if it maintains a speed of 31 m/s
    9·1 answer
  • if the magnitude of a vector is 42 and the angle it makes with the x-axis is 11 degrees, what is the horizontal vector component
    7·1 answer
  • 1.
    14·1 answer
  • WILL GIVE BRAINLIEST HELP FASTWhat is the mass of Planet X? Note: The constant of universal gravity (G) equals 6.674 X 10-11 N·m
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!