Answer: 462 g
Explanation:molar mass is M= 63.55 +2·(12.01+14.01)= 115.59 g/mol.
Mass m= n·M = 4.0 mol·115.59 g/mol= 462.36 g
Answer:
This reactivity order reflects both the strength of the C–X bond, and the stability of X(–) as a leaving group, and leads to the general conclusion that alkyl iodides are the most reactive members of this functional class.
First a balanced reaction equation must be established:

→

Now if mass of aluminum = 145 g
the moles of aluminum = (MASS) ÷ (MOLAR MASS) = 145 g ÷ 30 g/mol
= 4.83 mols
Now the mole ratio of Al : O₂ based on the equation is 4 : 3
[
4Al +
3 O₂ → 2 Al₂O₃]
∴ if moles of Al = 4.83 moles
then moles of O₂ = (4.83 mol ÷ 4) × 3
=
3.63 mol (to 2 sig. fig.)
Thus it can be concluded that
3.63 moles of oxygen is needed to react completely with 145 g of aluminum.
Chemical reaction
equation
reactants
products
yields
mass
balanced
atoms
coefficients
numbers
element
correct
substance
two
Explanation:
did my best lol I'm like 98.69% confident
Answer: Bubbles, burning, odor, color change, and rusting.
Explanation: Chemical changes are changes to something that is irreversible.