To solve the problem, it is necessary to apply the concepts related to the change of mass flow for both entry and exit.
The general formula is defined by

Where,
mass flow rate
Density
V = Velocity
Our values are divided by inlet(1) and outlet(2) by





PART A) Applying the flow equation we have to



PART B) For the exit area we need to arrange the equation in function of Area, that is



Therefore the Area at the end is 
Catalysts
a catalyst is something added to a reaction that speeds it up (or lowers the activation energy)
increasing the temp would speed up the whole reaction but not lower the activation energy
so B.
Since the circuit is incomplete or not closed, no current flows in the circuit. as per ohm's law , Voltage is directly proportional to current and is given as
V = Voltage = i R where i = current , R = resistance
as no current flows in the circuit, i = 0
the resistance R can not be zero. hence
V = 0 (R)
V = 0 Volts
so the magnitude of the Voltage is zero Volts