It's a bit of a trick question, had the same one on my homework. You're given an electric field strength (1*10^5 N/C for mine), a drag force (7.25*10^-11 N) and the critical info is that it's moving with constant velocity(the particle is in equilibrium/not accelerating).
<span>All you need is F=(K*Q1*Q2)/r^2 </span>
<span>Just set F=the drag force and the electric field strength is (K*Q2)/r^2, plugging those values in gives you </span>
<span>(7.25*10^-11 N) = (1*10^5 N/C)*Q1 ---> Q1 = 7.25*10^-16 C </span>
Because metallic bonds involve all of the metal atoms in a piece of metal sharing all of their valence electrons with "delocalized" bonds.
Answer:
Most adverse health effects of radiation exposure may be grouped in two general categories:
deterministic effects (harmful tissue reactions) due in large part to the killing/ malfunction of cells following high doses; and
stochastic effects, i.e., cancer and heritable effects involving either cancer development in exposed individuals owing to mutation of somatic cells or heritable disease in their offspring owing to mutation of reproductive (germ)
Answer:
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. ... For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes.