Answer:
I think it's 8
Step-by-step explanation:
Because it's half of it, you can tell by the image. RT is 16 and RU is 8
Answer:
The length of the mid-segment of the trapezoid = 7
==================================================
Step-by-step explanation:
The mid-segment of a trapezoid is the segment that connecting the midpoints of the two non-parallel sides.
As shown in the figure the two non-parallel sides are AB and CD
∴ The mid-segment of the trapezoid = 
From the figure: BC = 8 and AD = 6
∴ The mid-segment of the trapezoid = 
Answer: (3a + 1) (a + 3)
Step-by-step explanation:
<u>Concept:</u>
Here, we need to know the idea of factorization.
It is like "splitting" an expression into a multiplication of simpler expressions. Factoring is also the opposite of Expanding.
<u>Solve:</u>
Given = 3a² + 10a + 3
<em>STEP ONE: separate 3a² into two terms</em>
3a
a
<em>STEP TWO: separate 3 into two terms</em>
3
1
<em>STEP THREE: match the four terms in ways that when doing cross-multiplication, the result will give us 10a.</em>
3a 1
a 3
When cross multiply, 3a × 3 + 1 × a = 10a
<em>STEP FOUR: combine the expression horizontally to get the final factorized expression.</em>
3a ⇒ 1
a ⇒ 3
(3a + 1) (a + 3)
Hope this helps!! :)
Please let me know if you have any questions
By definition, if two lines share the same gradient, they are said to be parallel. So, we know for this equation, it must have a gradient of 1/2.
Now, since the point (-6, 4) passes through the line, we know it must satisfy the equation. Since we have a gradient/slope and a point, we can use the point-gradient form:

, where

represents the points being passed through.



Answer:
The third graph is your answer.
Step-by-step explanation:
I included a graph below with the correct graphing.