The ozone layer is a shield district of Earth's stratosphere that ingests a large portion of the Sun's bright radiation. It contains a high grouping of ozone (). It contains atoms of oxygen that keep the environment from hurtful beams that are available in the space and boundless by the sun, for instance, bright beams.
The ozone opening is to a greater degree a downturn, less a gap in the windshield. The ozone doesn't vanish through the layer, nor is there a uniform diminishing of the ozone layer. Also, it was found in 1913 by the French physicists Charles Fabry and Henri Buisson.
In 2017, the ozone opening arrived at a size of 7.6 million square miles (19.7 square kilometers) before beginning to recuperate. In 2016, the gap developed to 8 million square miles (20.7 square kilometers).
Answer:
pH = 13.1
Explanation:
Hello there!
In this case, according to the given information, we can set up the following equation:
Thus, since there is 1:1 mole ratio of HCl to KOH, we can find the reacting moles as follows:
Thus, since there are less moles of HCl, we calculate the remaining moles of KOH as follows:
And the resulting concentration of KOH and OH ions as this is a strong base:
And the resulting pH is:
Regards!
The answer is oxidation.
That is in the redox fueling reaction,
succinate + NAD ↔fumarate + NADPH, the succinate molecule is undergoing oxidation.
As succinate molecule is providing electrons to NAD, so that it can be reduced from NAD to NADPH. So it is losing electrons and undergoing oxidation.
So the answer is oxidation.
Explanation:
When OH- (as in potassium hydroxide) is added, it reacts with the acid (HOCl) to reduce the amount of HOCl and increase the concentration of sodium hypochlorite.
Potassium hydroxide will react with the hypochlorous acid to produce hypochlorite ions. In the process, some of the weak acid will be consumed, along with the added strong base.
This occurs as follows:
HClO(aq) + KOH(aq) → KClO(aq) + H2O(l)
since water is formed, this maintains the pH. Thus ...
A. The number of moles of HClO will decrease. - TRUE
B. The number of moles of ClO- will increase. - TRUE
C. The equilibrium concentration of H3O+ will remain the same. - TRUE
D. The pH will decrease. - FALSE
E. The ratio of [HClO] / [ClO-] will decrease. -TRUE. It will decrease as HClO goes down and ClO- goes up.
9 amino acids (alanine, cysteine, glycine, isoleucine, leucine, methionine, phenylalanine, proline, valine) have no hydrogen donor or acceptor atoms in their side chains.