Answer:
21.6 g
Explanation:
The reaction that takes place is:
First we<u> convert the given masses of both reactants into moles</u>, using their <em>respective molar masses</em>:
- 9.6 g CH₄ ÷ 16 g/mol = 0.6 mol CH₄
- 64.9 g O₂ ÷ 32 g/mol = 2.03 mol O₂
0.6 moles of CH₄ would react completely with (2 * 0.6) 1.2 moles of O₂. As there are more O₂ moles than required, O₂ is the reactant in excess and CH₄ is the limiting reactant.
Now we <u>calculate how many moles of water are produced</u>, using the <em>number of moles of the limiting reactant</em>:
- 0.6 mol CH₄ *
= 1.2 mol H₂O
Finally we<u> convert 1.2 moles of water into grams</u>, using its <em>molar mass</em>:
- 1.2 mol * 18 g/mol = 21.6 g
Answer:
The length of the wire = 352.66 feet.
Explanation:
A copper refinery produces a copper ingot weighing 150 lb. If the copper is drawn into wire whose diameter is 9.50 mm, how many feet of copper can be obtained from the ingot? The density of copper is 8.94 g/cm3. (Assume that the wire is a cylinder whose volume is V = πr2h, where r is the radius and h is its height or length.)
Step 1: Convert lb to kg
150 lb = 68.0389 kg
Step 2: Calculate volume of copper
Volume = mass / density
Volume = 68038.9 grams / 8.94 g/cm³
Volume = 7610.6 cm³ Cu
Step 3: Calculate length of wire
The diameter of the wire is 9.50 mm, so the radius is half of that (4.75 mm), or 0.475 cm.
The total "volume" of the wire is πr²h = (π)*(0.475 cm)²(h) = 0.708h = 7610 cm^3
7610 = 0.708h
h = 10749 cm = length of wire
The length of the wire = 352.66 feet.
Carbonated drinks have the air under pressure so that carbon bubbles are forced into the drink, keeping it carbonated. So when you open a can, the air under pressure in the can comes out of the can at a high speed, making a "whooshing" sound. The gas law that applies to this concept is the Boyle's Law (PV=k or P1V1=P2V2).
Answer:
pH = 2.66
Explanation:
- Acetic Acid + NaOH → Sodium Acetate + H₂O
First we <u>calculate the number of moles of each reactant</u>, using the <em>given volumes and concentrations</em>:
- 0.75 M Acetic acid * 50.0 mL = 37.5 mmol acetic acid
- 1.0 M NaOH * 10.0 mL = 10 mmol NaOH
We<u> calculate how many acetic acid moles remain after the reaction</u>:
- 37.5 mmol - 10 mmol = 27.5 mmol acetic acid
We now <u>calculate the molar concentration of acetic acid after the reaction</u>:
27.5 mmol / (50.0 mL + 10.0 mL) = 0.458 M
Then we <u>calculate [H⁺]</u>, using the<em> following formula for weak acid solutions</em>:
- [H⁺] =

Finally we <u>calculate the pH</u>:
The color it produces is Bright green.