The reaction where one component splits into two or more is a decomposition reaction.
The control Group
The control group is the group of mold spores that were not exposed to ultraviolet light, left in the darkness and as such were not altered. Control groups are not altered and serve as some form of measurement of the experimental group. The experimental group is the mold spores group exposed to ultraviolet light and observed to note the difference between it and the control group
The mass of the gas dissolved in 1.00 L of water at 25°C and 3.0 atm is equal to 1.26 grams.
<h3>How to determine the
mass of the
gas dissolved?</h3>
In order to determine the mass of the gas dissolved, we would the calculate the new (final) solubility of this gas by applying this formula:
S₁P₂ = S₂P₁
Making S₂ the subject of formula, we have:
S₂ = (S₁P₂)/P₁
S₂ = (0.42 × 3.0)/1.0
S₂ = 1.26 g/L.
Now, we can determine the mass:
Mass = solubility × volume
Mass = 1.26 × 1.00
Mass = 1.26 grams.
Read more on solubility here: brainly.com/question/3006391
#SPJ1
Answer:

Explanation:
Potential energy is energy due to position. It is the product of mass, height, and acceleration due to gravity.

The mass of the textbook is 1.85 kilograms. Assuming this is on Earth, the acceleration due to gravity is 9.8 meters per square second. The height is 2.23 meters.
- m= 1.85 kg
- g= 9.8 m/s²
- h= 2.23 m
Substitute the values into the formula.

Multiply the first 2 numbers together.

Multiply again.

- 1 kilogram square meter per square second (1 kg*m²/s²) is equal to 1 Joules (J)
- Our answer of 40.4299 kg*m²/s² is equal to 40.4299 J

The textbook has <u>40.4299 Joules of potential energy.</u>