The question is incomplete, the complete question is;
Which statement describes a difference between electromagnetic and mechanical waves?
A. Mechanical waves cannot be longitudinal, but electromagnetic waves can.
B. Electromagnetic waves cannot move particles, but mechanical waves can.
C. Electromagnetic waves do not require a medium, but mechanical waves do.
D. Mechanical waves do not transfer energy, but electromagnetic waves do.
Answer:
Electromagnetic waves do not require a medium, but mechanical waves do.
Explanation:
A wave is defined as a disturbance along a medium which transfers energy. Waves may be classified as mechanical waves or electromagnetic waves based on their medium of propagation.
A mechanical wave requires a material medium for propagation. An example of a mechanical wave is sound waves. Sound waves are propagated in air.
Electromagnetic waves do not require a material medium for propagation. They can travel through space. An example of electromagnetic waves is light waves.
The correct answer is Platinum.
The metals which are not oxidized by an ion, they should be less reactive than silver, gold, and copper is platinum.
All group 11 elements are relatively corrosion-resistance metals and they are inert.
They have low electrical resistivity and are used for wiring. Copper, Silver, and gold are the most thermally conductive element and most light reflecting.
In longitudinal waves, the oscillations are along the same direction as the direction of travel and energy transfer.
Sound waves and waves in a stretched spring are longitudinal waves. P waves (relatively fast moving longitudinal seismic waves that travel through liquids and solids) are also longitudinal waves.
Longitudinal waves show area of compression and rarefaction. In the animation, the areas of compression are where the parts of the spring are close together, while the areas of rarefaction are where they are far apart.