Answer:
9.8 × 10²⁴ molecules H₂O
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Organic</u>
<u>Stoichiometry</u>
- Analyzing reaction rxn
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[RxN - Unbalanced] CH₄ + O₂ → CO₂ + H₂O
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 130 g CH₄
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[RxN] 1 mol CH₄ → 2 mol H₂O
[PT] Molar Mass of C: 12.01 g/mol
[PT] Molar Mass of H: 1.01 g/mol
Molar Mass of CH₄: 12.01 + 4(1.01) = 16.05 g/mol
<u>Step 3: Stoichiometry</u>
- [DA] Set up conversion:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
9.75526 × 10²⁴ molecules H₂O ≈ 9.8 × 10²⁴ molecules H₂O
According to Charles' Law the volume of an ideal gas is directly proportional to its absolute temperature in Kelvin keeping the pressure constant.
V∝ T, P is constant
where V, T and P are volume, temperature and pressure
= 
where V₁, T₁, V₂ and T₂ are initial volume, initial temperature, final volume and final temperature.
500,000 g of baking soda is present in 1000 boxes of 500 g baking soda boxes.
Answer:
Option C.
Explanation:
As 500 g of baking soda is taken in each box of that company. The total weight of baking soda in all the boxes can be determined by adding the weights of each box. This is possible only when the number of boxes is less. But if the number of boxes are large, then we can determine the total weight of baking soda by multiplying the number of boxes with the weight in each box.
So in this case, 1000 boxes are present and in that 500 g of baking soda are present in each box.
So total grams of baking soda will be 1000 * 500 = 5,00,000 g.
Thus, 500,000 g of baking soda is present in 1000 boxes of 500 g baking soda boxes.
0.000735 in scientific notation is 7.35 x 10^-4
Answer:
A reaction in which the oxidation state of one element increases and another decreases
Explanation:
Redox reaction means both oxidation and reduction take place in that reaction.
So when an element oxides its oxidation state increases and when an element reduces its oxidation state decrease.