Answer:
D. left foot for the accelerator and your right foot for the brake.
* Hopefully this helps:) mark me the brainliest:)!!
Answer:
C₁₀ = 6.3 KN
Explanation:
The catalog rating of a bearing can be found by using the following formula:
C₁₀ = F [Ln/L₀n₀]^1/3
where,
C₁₀ = Catalog Rating = ?
F = Design Load = 2.75 KN
L = Design Life = 1800 rev/min
n = No. of Hours Desired = 10000 h
L₀ = Rating Life = 500 rev/min
n₀ = No. of Hours Rated = 3000 h
Therefore,
C₁₀ = [2.75 KN][(1800 rev/min)(10000 h)/(500 rev/min)(3000 h)]^1/3
C₁₀ = (2.75 KN)(2.289)
<u>C₁₀ = 6.3 KN</u>
Answer:
Mechanical Efficiency = 83.51%
Explanation:
Given Data:
Pressure difference = ΔP=1.2 Psi
Flow rate = 
Power of Pump = 3 hp
Required:
Mechanical Efficiency
Solution:
We will first bring the change the units of given data into SI units.

Now we will find the change in energy.
Since it is mentioned in the statement that change in elevation (potential energy) and change in velocity (Kinetic Energy) are negligible.
Thus change in energy is

As we know that Mass = Volume x density
substituting the value
Energy = Volume * density x ΔP / density
Change in energy = Volumetric flow x ΔP
Change in energy = 0.226 x 8.274 = 1.869 KW
Now mechanical efficiency = change in energy / work done by shaft
Efficiency = 1.869 / 2.238
Efficiency = 0.8351 = 83.51%
Answer:
An artificial Christmas tree is an artificial pine or fir tree manufactured for the specific purpose of use as a Christmas tree. The earliest artificial Christmas trees were wooden, tree-shaped pyramids or feather trees, both developed by Germans. Most modern trees are made of polyvinyl chloride (PVC) but many other types of trees have been and are available, including aluminum Christmas trees and fiber-optic illuminated Christmas trees.
Explanation:
Answer:
a) m=336.18N
b) Vn=16.67m/kmol
Vm=0.1459m^3/kg
Explanation:
To calculate the mass of the octane(m):
Number of mole of octane (n) =0.3kmol(given)
Molarmass of octane (M) =114.23kg/kmol
m=n*M
m=(0.3kmol)*(114.23kg/kmol)
m=34.269kg
To calculate for the weight of octane(W):
W=g*m
W=(9.81m/s^2)*(34.269kg)
W=336.18N
b) For specific volumes of Vn and Vm:
Given volume of octane (V) =5m^3
Vm=V/m
Vm=5m^3/34.269kg
Vm=0.1459m^3/kg
And Vn will be :
Vn=V/m=5m^3/0.3kmol
Vn=16.67m/Kmol
Therefore, the answers are:
a) m=336.18N
b) Vn=16.67m/kmol
Vm=0.1459m^3/kg