Answer:
Sulfur (Option-C) <span>exhibits chemical behavior similar to that of oxygen.
Explanation:
Sulfur has same chemical properties as that of Oxygen because both of them belongs to same group in the periodic table. Also, the similarity of chemical behaviour among the group members is due to same number of electrons in their valence shells.
For examole, the electronic configuration of Oxygen is,
1s</span>², 2s², 2p⁴
There are six valence electrons in the valence shell (i.e. 2) of Oxygen.
Now for Sulfur,
1s², 2s², 2p⁶, 3s², 3p⁴
There are six valence electrons in the valence shell (i.e. 3) of Sulfur.
Therefore, both elements tends to gain 2 electrons in a reaction and form O⁻² and S⁻² respectively.
Answer:
Zn =⇒ Zn+2(0.10) + 2e- (anode)
Zn+2(?M) + 2e- === Zn(s) (cathode)
Zn + Zn+2(?M) ===⇒ Zn+2(0.10) + Zn
E = E^o -0.0592 log Q; in this case E^o is zero.
E = - 0.0592 /n logQ where n is the number of electrons transferred, in this
case n = 2
23 mV x 1 volt/1000mv = 0.023 Volts
0.023 = -0.0592 / 2 log(0.10) / [Zn+2]
0.023 = -0.0296 { log 0.10 – log [Zn+2] }
0.023 = -0.0296{ -1 - log[Zn+2] }
0.023 = +0.0296 + 0.0296log[Zn+2]
-0.0066 = 0.0296log[Zn+2]
-0.22= log[Zn+2]
[Zn+2] = 10^-0.22 = 0.603 Molar
Answer:
a0 = 2
a1= 9
a2= 6
a3= 8
Explanation:
The equation for the reaction is;
C3H7OH + O2 → CO2 + H2O
To balance the chemical equation we introduce coefficients;
Therefore the balanced chemical equation will be;
2C3H7OH + 9O2 → 6CO2 + 8H2O
Chemical equations are balanced to ensure the law of conservation of mass is obeyed, such that the mass of the reactants is equivalent to that of the products.
Answer:
How does the energy required to remove an electron from an atom change as you move left to right in Period 4 from potassium through iron? ... A greater nuclear charge pulls the electrons closer to the nucleus, decreasing the atomic radius.