Answer:
So the answer would be 10 moles
Explanation:
1) Start with the molecular formula for water: 
2) If there are 10 moles of water use a mole ratio to calculate the moles of oxygen it would produce.
(This question is... interesting... since they chose an element that is diatomic in free state so It could TECHNICALLY be two answers, moles of O or moles of
)
The mole ratio is 1 moles of
to 1 moles of O. This is because the coefficient for oxygen in water is simple 1, so the ratio is 1:1.
3) that means if 10 moles of water decompose, they decompose into 10 moles of
and 10 moles of O.
Extra:
About what I was saying before about the question being slightly interesting:
10 moles of pure oxygen is produced but free state oxygen exists as
so it could possibly be 10 OR 5! However, notice it says elements. This leads me to believe the answer is 10 (monatomic oxygen) instead of 5 (free state/diatomic oxygen).
I hope this helps!
Explanation:
The given reaction is as follows.

Value of equilibrium constant is given as
= 4.3 \times 10^{6}[/tex].
Concentration of given species is
= 0.010 M;
= 10.M;
= 0.010 M.
Formula for experimental value of equilibrium constant (Q) is as follows.
Q =
Putting the given concentration as follows.
Q =
Q = 
Q = 
It is known that when Q >
, then reaction moves in the backward direction.
When Q <
, then reaction moves in the forward direction.
When Q =
, then reaction is at equilibrium.
As, for the given reaction Q >
then it means reaction moves in the backward direction.
Thus, we can conclude that the reaction is moving in the backward direction, that is, right to left to reach the equilibrium.
Answer: <em>Hopefully this helps! sorry if not. :))</em>
<em></em>
<em>Speed has a greater impact on mass because its increases in velocity have an exponentially greater impact on translational kinetic energy because kinetic energy is proportional to velocity squared. Doubling an object's mass would only double its kinetic energy, however doubling its momentum would quadruple its velocity.</em>
Answer:
ane, al, keto
ol, al, keto
ol, al, one
ol, ane, one.
Explanation:
The suffix –ol is used in organic chemistry principally to form names of organic compounds containing the hydroxyl (–OH) group, mainly alcohols (also phenol). The suffix was extracted from the word alcohol. The suffix also appears in some trivial names with reference to oils (from Latin oleum, oil).
Functional group is a ketone, therefore suffix = -one
Hydrocarbon structure is an alkane therefore -ane
The longest continuous chain is C5 therefore root = pent
The first point of difference rule requires numbering from the left as drawn to make the ketone group locant 2-
pentan-2-one or 2-pentanone
CH3CH2CH2C(=O)CH3