Answer : The partial pressure of helium is, ![1.815\times 10^4KPa](https://tex.z-dn.net/?f=1.815%5Ctimes%2010%5E4KPa)
Solution : Given,
Molar mass of
= 32 g/mole
Molar mass of helium = 4 g/mole
Molar mass of
= 28 g/mole
Total pressure of gas = ![2.07\times 10^4KPa](https://tex.z-dn.net/?f=2.07%5Ctimes%2010%5E4KPa)
As we are given gases in percent, that means 10 g of oxygen gas, 50 g of helium gas and 40 g of nitrogen gas present in 100 g of mixture.
First we have to calculate the moles of oxygen, helium and nitrogen gas.
![\text{Moles of }O_2=\frac{\text{Mass of }O_2}{\text{Molar mass of }O_2}=\frac{10g}{32g/mole}=0.3125moles](https://tex.z-dn.net/?f=%5Ctext%7BMoles%20of%20%7DO_2%3D%5Cfrac%7B%5Ctext%7BMass%20of%20%7DO_2%7D%7B%5Ctext%7BMolar%20mass%20of%20%7DO_2%7D%3D%5Cfrac%7B10g%7D%7B32g%2Fmole%7D%3D0.3125moles)
![\text{Moles of }He=\frac{\text{Mass of }He}{\text{Molar mass of }He}=\frac{50g}{4g/mole}=12.5moles](https://tex.z-dn.net/?f=%5Ctext%7BMoles%20of%20%7DHe%3D%5Cfrac%7B%5Ctext%7BMass%20of%20%7DHe%7D%7B%5Ctext%7BMolar%20mass%20of%20%7DHe%7D%3D%5Cfrac%7B50g%7D%7B4g%2Fmole%7D%3D12.5moles)
![\text{Moles of }N_2=\frac{\text{Mass of }N_2}{\text{Molar mass of }N_2}=\frac{40g}{28g/mole}=1.428moles](https://tex.z-dn.net/?f=%5Ctext%7BMoles%20of%20%7DN_2%3D%5Cfrac%7B%5Ctext%7BMass%20of%20%7DN_2%7D%7B%5Ctext%7BMolar%20mass%20of%20%7DN_2%7D%3D%5Cfrac%7B40g%7D%7B28g%2Fmole%7D%3D1.428moles)
Now we have to calculate the total number of moles of gas mixture.
![\text{Total number of moles of gas}=\text{Moles of oxygen gas}+\text{Mole of helium gas}+\text{Moles of nitrogen gas}](https://tex.z-dn.net/?f=%5Ctext%7BTotal%20number%20of%20moles%20of%20gas%7D%3D%5Ctext%7BMoles%20of%20oxygen%20gas%7D%2B%5Ctext%7BMole%20of%20helium%20gas%7D%2B%5Ctext%7BMoles%20of%20nitrogen%20gas%7D)
![\text{Total number of moles of gas}=0.3125+12.5+1.428=14.24moles](https://tex.z-dn.net/?f=%5Ctext%7BTotal%20number%20of%20moles%20of%20gas%7D%3D0.3125%2B12.5%2B1.428%3D14.24moles)
Now we have to calculate the moles fraction of helium gas.
![\text{Mole fraction of He gas}=\frac{\text{Moles of He gas}}{\text{Total number of moles of gas}}=\frac{12.5}{14.25}=0.877](https://tex.z-dn.net/?f=%5Ctext%7BMole%20fraction%20of%20He%20gas%7D%3D%5Cfrac%7B%5Ctext%7BMoles%20of%20He%20gas%7D%7D%7B%5Ctext%7BTotal%20number%20of%20moles%20of%20gas%7D%7D%3D%5Cfrac%7B12.5%7D%7B14.25%7D%3D0.877)
Now we have to calculate the partial pressure of helium.
![p_{He}=X_{He}\times P_T](https://tex.z-dn.net/?f=p_%7BHe%7D%3DX_%7BHe%7D%5Ctimes%20P_T)
where,
= partial pressure of helium
= total pressure
= mole fraction of helium
Now put all the given values in this formula, we get
![p_{He}=(0.877)\times (2.07\times 10^4KPa)=1.815\times 10^4KPa](https://tex.z-dn.net/?f=p_%7BHe%7D%3D%280.877%29%5Ctimes%20%282.07%5Ctimes%2010%5E4KPa%29%3D1.815%5Ctimes%2010%5E4KPa)
Therefore, the partial pressure of helium is, ![1.815\times 10^4KPa](https://tex.z-dn.net/?f=1.815%5Ctimes%2010%5E4KPa)