Answer:
a. -0.63 V
b. No
Explanation:
Step 1: Given data
- Standard reduction potential of the anode (E°red): -1.33 V
- Minimum standard cell potential (E°cell): 0.70 V
Step 2: Calculate the required standard reduction potential of the cathode
The galvanic cell must provide at least 0.70V of electrical power, that is:
E°cell > 0.70 V [1]
We can calculate the standard reduction potential of the cathode (E°cat) using the following expression.
E°cell = E°cat - E°an [2]
If we combine [1] and [2], we get,
E°cat - E°an > 0.70 V
E°cat > 0.70 V + E°an
E°cat > 0.70 V + (-1.33 V)
E°cat > -0.63 V
The minimum E°cat is -0.63 V and there is no maximum E°cat.
is there supposed be a picture with the question?
H₂SO₄ + 2NaOH = Na₂SO₄ + 2H₂O
v(NaOH)=46 ml=0.046 l
c(NaOH)=1.0 mol/l
v(H₂SO₄)=55 ml=0.055 l
n(NaOH)=v(NaOH)*c(NaOH)
n(H₂SO₄)=0.5n(NaOH)
c(H₂SO₄)=n(H₂SO₄)/v(H₂SO₄)=0.5*v(NaOH)*c(NaOH)/v(H₂SO₄)
c(H₂SO₄)=0.5*0.046*1.0/0.055=0.418 mol/l
The concentration of the H₂SO₄ is 0.418M.
Answer:
a
Explanation:
because the others doesn't makes sense