Hypochlorous acid is a weak acid. The
value for the dissociation of HOCl is 
Answer:
the concentration of PCl5 in the equilibrium mixture = 296.20M
Explanation:
The concept of equilibrium constant was applied where the equilibrium constant is the ration of the concentration of the product over the concentration of the reactants raised to the power of their coefficients. it can be in terms of concentration in M or in terms of Pressure in atm.
The detaied steps is as shown in the attached file.
Answer:
<u />
<u />
<u />
Explanation:
<u>1. Chemical balanced equation (given)</u>

<u>2. Mole ratio</u>

This is, 1 mol of NaOH will reacts with 1 mol of KHP.
<u />
<u>3. Find the number of moles in 72.14 mL of the base</u>



<u>4. Find the number of grams of KHP that reacted</u>
The number of moles of KHP that reacted is equal to the number of moles of NaOH, 0.007055 mol
Convert moles to grams:
- mass = number moles × molar mass = 0.007055mol × 204.23g/mol
You have to round to 3 significant figures: 1.44 g (because the molarity is given with 3 significant figures).
<u>5. Find the percentage of KHP in the sample</u>
The percentage is how much of the substance is in 100 parts of the sample.
The formula is:
- % = (mass of substance / mass of sample) × 100
- % = (1.4408g/ 1.864g) × 100 = 77.3%
For many solids<span> dissolved in </span>liquid<span> water, the </span>solubility <span>increases with </span>temperature<span>.</span>
Answer:
See explanation
Explanation:
In the Rutherford experiment, alpha particles were directed at the same spot on a thin gold foil.
As the alpha particles hit the foil, most of the alpha particles went through the foil. In Rutherford's interpretation, most of the particles went through because the atom consisted largely of empty space.
However, some of the alpha particles were deflected through large angles, in Rutherford's interpretation, the deflected alpha particles had hit the dense positive core of the atom which he called the nucleus.
This accounted for their scattering through large angles throughout the foil in all directions.