Answer:
44.8 litres is the answer to the question
Rate law for the given 2nd order reaction is:
Rate = k[a]2
Given data:
rate constant k = 0.150 m-1s-1
initial concentration, [a] = 0.250 M
reaction time, t = 5.00 min = 5.00 min * 60 s/s = 300 s
To determine:
Concentration at time t = 300 s i.e. ![[a]_{t}](https://tex.z-dn.net/?f=%5Ba%5D_%7Bt%7D)
Calculations:
The second order rate equation is:
![1/[a]_{t} = kt +1/[a]](https://tex.z-dn.net/?f=1%2F%5Ba%5D_%7Bt%7D%20%3D%20kt%20%2B1%2F%5Ba%5D)
substituting for k,t and [a] we get:
1/[a]t = 0.150 M-1s-1 * 300 s + 1/[0.250]M
1/[a]t = 49 M-1
[a]t = 1/49 M-1 = 0.0204 M
Hence the concentration of 'a' after t = 5min is 0.020 M
An orbital that penetrates into the region occupied by core electrons is less shielded from nuclear charge than an orbital that does not penetrate and therefore has a lower energy.
Explanation:
The only true statement from the given options is that "an orbital that penetrates into the region occupied by core electrons is less shielded from nuclear charge than an orbital that does not penetrate and therefore has a lower energy." Inner orbitals which are also known to contain core electrons feels the bulk of the nuclear pull on them compared to the outermost orbitals containing the valence electrons.
- The nuclear pull is the effect of the nucleus pulling and attracting the electrons in orbitals.
- This pull is stronger for inner orbitals and weak on the outer ones.
- The outer orbitals are said to be well shielded from the pull of the nuclear charge.
- Also, based on the quantum theory, electrons in the outer orbitals have higher energies because they occupy orbitals at having higher energy value.
Learn more:
brainly.com/question/1832385
#learnmoreBrainly
Answer: 
Explanation:
Engineering notation : It is the representation of expressing the numbers that are too big or too small and are represented in the decimal form times 10 raise to the power. It is similar to the scientific notation but in engineering notation, the powers of ten are always multiples of 3.
The engineering notation written in the form:
where,
a = the number which is greater than 0 and less than 999
b = an integer multiple of 3
Now converting the given value of 2,469,100 into engineering notation, we get
Hence, the correct answer is, 
Answer:
CaCl₂ > CH₃OH = LiCl > C₆H₁₂O₆
Explanation:
The osmotic pressure of a compound is calculated using the following expression:
π = MRT (1)
This expression is used when the substance is nonelectrolyte. If the solution is electrolyte solution then we need to count the van't hoff factor into the expression so:
π = MRTi (2)
Now, we have 4 solutions here, only two of them are electrolyte solution, this means that these solutions can be dissociated into separate ions. These solutions are LiCl and CaCl₂. It can be shown in the following reactions:
LiCl -------> Li⁺ + Cl⁻ 2 ions (i = 2)
CaCl₂ ---------> Ca²⁺ + 2Cl⁻ 3 ions (i = 3)
The methanol (CH₃OH) and glucose (C₆H₁₂O₆) are non electrolyte solutions, therefore they are not dissociated. So, let's use expression (1) for methanol and glucose, and expression (2) for the salts:
CaCl₂: π = 1 * 3 * RT = 3RT
CH₃OH: π = 2 * RT = 2RT
C₆H₁₂O₆: π = 1 * RT = 1RT
LiCl: π = 1 * 2 * RT = 2RT
Finally with these results we can conclude that the decreasing order of these solutions according to their osmotic pressures are:
<h2>
CaCl₂ > CH₃OH = LiCl > C₆H₁₂O₆</h2>