1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
1 year ago
9

exhibit 6-5 the weight of items produced by a machine is normally distributed with a mean of 8 ounces and a standard deviation o

f 2 ounces. refer to exhibit 6-5. what percentage of items will weigh between 6.4 and 8.9 ounces? a. .2881 b. .1145 c. .4617 d. .1736
Physics
1 answer:
monitta1 year ago
8 0

The percentage of items will weigh between 6.4 and 8.9 ounces 0.4617.

In science and engineering, the burden of an object is the force performing on the item because of gravity. a few well-known textbooks outline weight as a vector quantity, the gravitational force performed on the object. Others outline weight as a scalar quantity, the importance of the gravitational pressure.

Retaining your weight inside the ordinary range is an important part of healthful growing old. As in other tiers of existence, elevated body mass index (BMI) in older adults can growth the chance of developing fitness issues. those encompass heart ailments, excessive blood strain, stroke, and diabetes.

Bad sleep, sedentary activities, and consuming too many processed or sugary meals are simply some of the habits that could increase your hazard of weight advantage. yet, some simple steps — together with mindful ingesting, workout.

Learn more about weight here:brainly.com/question/229459

#SPJ4

You might be interested in
A sample of copper has a volume of 23.4 cm3 if the density of copper is 8.9 gcm3 what is the coppers mass?
murzikaleks [220]
The answer is:  " 208 g " .
_____________________________________________
Explanation:
__________________________________________
The formula/ equation for density is:
__________________________________________
D = m / V  ;  That is,  "mass divided by volume" ;
 
Density is expressed as:
__________________________________________    
                   "mass per unit volume";  in which the "mass" is expressed in units of "g" ("grams") ;  and the "unit volume" is expressed in units of:
    "cm³ " or "mL"; 
_____________________________________________
           {Note the exact equivalent:  1 cm³ = 1 mL }.
____________________________________________
         →  The formula is:  " D = m / V "  ; 
___________________________________________
   in which:

     "D" refers to the "density" (see above), which is: "8.9 g/cm³ " (given); 

     "m" refers to the "mass" , in units of "g" (grams), which is unknown; and we want to find this value;
                 
     "V" refers to the "volume", in units of "cm³ " ;
               which is:  "23.4 cm³ " (given);
_________________________________________________
                 We want to find the mass, "m" ; so we take the original equation/formula for the density:
_________________________________________________ 
              D  =  m / V ; 
_________________________________________________________
             And we rearrange; to isolate "m" (mass) on ONE side of the    equation; and then we plug in our known/given values;
 to solve for "m" (mass);  in units of "g" (grams) ;
___________________________________________________
    Multiply each side of the equation by "V" ; 
____________________________________________________
             V * { D  =  m / V } ;  to get:
____________________________________________________
      V * D = m ;   ↔   m = V * D ;
___________________________________________________
           Now, we plug in the given values for "V" (volume) and "D" (density) ;     to solve for the mass, "m" ;
______________________________________________________
           m  =  V * D ;
 
           m  =  (23.4 cm³) * (8.9 g / 1 cm³)  = (23.4 * 8.9) g = 208.26 g ;
  
 →  Round to "208 g" (3 significant figures);  
____________________________________
The answer is:  " 208 g " .
_____________________________________________________
7 0
3 years ago
In a second experiment, you decide to connect a string which has length L from a pivot to the side of block A (which has width d
Salsk061 [2.6K]

Answer:

The answer is in the explanation

Explanation:

A)

i) The blocks will come to rest when all their initial kinetic energy is dissipated by the friction force acting on them. Since block A has higher initial kinetic energy, on account of having larger mass, therefore one can argue that block A will go farther befoe coming to rest.

ii) The force on friction acting on the blocks is proportional to their mass, since mass of block B is less than block A, the force of friction acting on block B is also less. Hence, one might argue that block B will go farther along the table before coming to rest.

B) The equation of motion for block A is

m_{A}\frac{\mathrm{d} v}{\mathrm{d} t} = -m_{A}g\nu_{s}\Rightarrow \frac{\mathrm{d} v}{\mathrm{d} t} = -\nu_{s}g \quad (1)

Here, \nu_{s} is the coefficient of friction between the block and the surface of the table. Equation (1) can be easily integrated to get

v(t) = C-\nu_{s}gt \quad (2)

Here, C is the constant of integration, which can be determined by using the initial condition

v(t=0) = v_{0}\Rightarrow C = v_{0} \quad (3)

Hence

v(t) = v_{0} - \nu_{s}gt \quad (4)

Block A will stop when its velocity will become zero,i.e

0 = v_{0}-\nu_{s}gT\Rightarrow T = \frac{v_{0}}{\nu_{s}g} \quad (5)

Going back to equation (4), we can write it as

\frac{\mathrm{d} x}{\mathrm{d} t} = v_{0}-\nu_{s}gt\Rightarrow x(t) = v_{0}t-\nu_{s}g\frac{t^{2}}{2}+D \quad (6)

Here, x(t) is the distance travelled by the block and D is again a constant of integration which can be determined by imposing the initial condition

x(t=0) = 0\Rightarrow D = 0 \quad (7)

The distance travelled by block A before stopping is

x(t=T) = v_{0}T-\nu_{s}g\frac{T^{2}}{2} = v_{0}\frac{v_{0}}{\nu_{s}g}-\nu_{s}g\frac{v_{0}^{2}}{2\nu_{s}^{2}g^{2}} = \frac{v_{0}^{2}}{2\nu_{s}g} \quad (8)

C) We can see that the expression for the distance travelled for block A is independent of its mass, therefore if we do the calculation for block B we will get the same result. Hence the reasoning for Student A and Student B are both correct, the effect of having larger initial energy due to larger mass is cancelled out by the effect of larger frictional force due to larger mass.

D)

i) The block A is moving in a circle of radius L+\frac{d}{2} , centered at the pivot, this is the distance of pivot from the center of mass of the block (assuming the block has uniform mass density). Because of circular motion there must be a centripetal force acting on the block in the radial direction, that must be provided by the tension in the string. Hence

T = \frac{m_{A}v^{2}}{L+\frac{d}{2}} \quad (9)

The speed of the block decreases with time due to friction, hence the speed of the block is maximum at the beginning of the motion, therfore the maximum tension is

T_{max} = \frac{m_{A}v_{0}^{2}}{L+\frac{d}{2}} \quad (10)

ii) The forces acting on the block are

a) Tension: Acting in the radially inwards direction, hence it is always perpendicular to the velocity of the block, therefore it does not change the speed of the block.

b) Friction: Acting tangentially, in the direction opposite to the velocity of the block at any given time, therefore it decreases the speed of the block.

The speed decreases linearly with time in the same manner as derived in part (C), using the expression for tension in part (D)(i) we can see that the tension in the string also decreases with time (in a quadratic manner to be specific).

8 0
3 years ago
20 points!
MariettaO [177]
Do they give answer choices? or is it free write? i’ll help if you tell me!!
8 0
3 years ago
What is the frequency of a wave that has a wavelength of 0.39 m and a speed
gogolik [260]

Answer:

<h3>The answer is option B</h3>

Explanation:

The frequency of a wave can be found by using the formula

f =  \frac{c}{ \lambda}  \\

where

c is the velocity

From the question

wavelength = 0.39 m

c = 86 m/s

We have

f =  \frac{86}{0.39}  \\  = 220.512820...

We have the final answer as

<h3>200 Hz</h3>

Hope this helps you

7 0
3 years ago
choose the correct anwer 9: the range of the gravitional force is given by A: 10_2m B:10_15m C: infinite D: 10_10m​
frosja888 [35]

Answer:

The answer is C

Explanation:

The magnitude of the gravitational force depends inversely on the square of the radial distance between the centers of the two masses. Thus, essentially, the force can only fall to zero, when the denominator that is r becomes infinite.

6 0
3 years ago
Other questions:
  • A bug zapper consists of two metal plates connected to a high-voltage power supply. The voltage between the plates is set to giv
    13·1 answer
  • Which of the following is a clue of a chemical change?
    11·2 answers
  • find the current to run an electrical motor that has an output of 2.1 horsepower and is 71% efficient. operates at 171 volts ans
    8·1 answer
  • What force keeps an object moving in a circle
    11·1 answer
  • NEED HELP ASAP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    9·1 answer
  • Galileo discovered that the orbits in which planets move around the Sun are elliptical.
    14·2 answers
  • What is the acceleration of a 50 kg object pushed with a net force of 500 newtons?
    14·1 answer
  • The weight of an object is the force pulling the object:
    13·1 answer
  • A) Charge q1 = +5.60 nC is on the x-axis at x = 0 and an unknown charge q2 is on the x-axis at x = -4.00 cm. The total electric
    9·1 answer
  • In the winter activity of tubing, riders slide down snow covered slopes while sitting on large inflated rubber tubes. To get to
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!