<span>7.379 * 10^(-4) is measured, hence prone to error, either human error or via measuring device. In this case,
100 cm = 1 m is written in stone and is unquestionable.
The density of the gold is 19.3 g/cm^3 and could be an approximation.
The approximation is good to at least one night.</span>
The answer is b.
Hope that helps :)
There chemical reactions that can realise or absorb gas to the atmosphere. This means it is harder or impossible to measure it with normal weighing devices and normal taring equipment. As a principal in chemical reactions we have conservation of mass.
Answer:
B = (2.953 × 10⁻⁹⁵) N.m⁹
Explanation:
At equilibrium, where the distance between the two ions (ro) is the sum of their ionic radii, the force between the two ions is zero.
That is,
Fa + Fr = 0
Fa = - Fr
Fa = (|q₁q₂|)/(4πε₀r²)
Fr = -B/(r^n) but n = 9
Fr = -B/r⁹
(|q₁q₂|)/(4πε₀r²) = (B/r⁹)
|q₁| = |q₂| = (1.6 × 10⁻¹⁹) C
(1/4πε₀) = k = (8.99 × 10⁹) Nm²/C²
r = 0.097 + 0.181 = 0.278 nm = (2.78 × 10⁻¹⁰) m
(k|q₁q₂|)/(r²) = (B/r⁹)
(k × |q₁q₂|) = (B/r⁷)
B = (k × |q₁q₂| × r⁷)
B = [8.99 × 10⁹ × 1.6 × 10⁻¹⁹ × 1.6 × 10⁻¹⁹ × (2.78 × 10⁻¹⁰)⁷]
B = (2.953 × 10⁻⁹⁵) N.m⁹