Answer:
ΔP = 14.5 Ns
I = 14.5 Ns
ΔF = 5.8 x 10³ N = 5.8 KN
Explanation:
The mass of the ball is given as 0.145 kg in the complete question. So, the change in momentum will be:
ΔP = mv₂ - mv₁
ΔP = m(v₂ - v₁)
where,
ΔP = Change in Momentum = ?
m = mass of ball = 0.145 kg
v₂ = velocity of batted ball = 55.5 m/s
v₁ = velocity of pitched ball = - 44.5 m/s (due to opposite direction)
Therefore,
ΔP = (0.145 kg)(55.5 m/s + 44.5 m/s)
<u>ΔP = 14.5 Ns</u>
The impulse applied to a body is equal to the change in its momentum. Therefore,
Impulse = I = ΔP
<u>I = 14.5 Ns</u>
the average force can be found as:
I = ΔF*t
ΔF = I/t
where,
ΔF = Average Force = ?
t = time of contact = 2.5 ms = 2.5 x 10⁻³ s
Therefore,
ΔF = 14.5 N.s/(2.5 x 10⁻³ s)
<u>ΔF = 5.8 x 10³ N = 5.8 KN</u>
The distance an object falls from rest through gravity is
D = (1/2) (g) (t²)
Distance = (1/2 acceleration of gravity) x (square of the falling time)
We want to see how the time will be affected
if ' D ' doesn't change but ' g ' does.
So I'm going to start by rearranging the equation
to solve for ' t '.
D = (1/2) (g) (t²)
Multiply each side by 2 : 2 D = g t²
Divide each side by ' g ' : 2 D/g = t²
Square root each side: t = √ (2D/g)
Looking at the equation now, we can see what happens
to ' t ' when only ' g ' changes:
-- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'
and smaller 'g' ==> longer 't' .
-- They don't change by the same factor, because 1/g is inside
the square root. So 't' changes the same amount as √1/g does.
Gravity on the surface of the moon is roughly 1/6 the value
of gravity on the surface of the Earth.
So we expect ' t ' to increase by √6 = 2.45 times.
It would take the same bottle (2.45 x 4.95) = 12.12 seconds
to roll off the same window sill and fall 120 meters down to the
surface of the Moon.
The density of seawater at a depth where the pressure is 500 atm is 
Explanation:
The relationship between bulk modulus and pressure is the following:

where
B is the bulk modulus
is the density at surface
is the variation of pressure
is the variation of density
In this problem, we have:
is the bulk modulus

is the change in pressure with respect to the surface (the pressure at the surface is 1 atm)
Therefore, we can find the density of the water where the pressure is 500 atm as follows:

Learn more about pressure in a fluid:
brainly.com/question/9805263
#LearnwithBrainly
Answer:
i hope it will be useful for you
Explanation:
F=5.6×10^-10N
R=93cm=0.93m
let take m1 and m2 =m²
according to newton's law of universal gravitation
F=m1m2/r²
F=m²/r²
now we have to find masses
F×r²=m²
5.6×10^10N×0.93m=m²
5.208×10^-9=m²
taking square root on b.s
√5.208×10^-9=√m²
so the two masses are m1=7.2×10^-5
and m2=7.2×10^-5
Answer:
an act of asking for information.