The speed of the 0.8 kg ball immediately after collision is 0.625 m/s in opposite direction to the stationary ball.
The given parameters;
- mass of the ball, m₁ = 0.8 kg
- speed of the ball, u₁ = 2.5 m/s
- mass of the object at rest, m₂ = 2.5 kg
- final velocity of the object at rest, v₂ = 1 m/s
Let the final velocity of the 0.8 kg ball immediately after collision = v₁
Apply the principle of conservation of linear momentum;
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
(0.8 x 2.5) + (2.5 x 0) = (0.8)v₁ + 2.5(1)
2 = 2.5 + (0.8)v₁
-0.5 = (0.8)v₁

Thus, the speed of the 0.8 kg ball immediately after collision is 0.625 m/s in opposite direction to the stationary ball.
Learn more here: brainly.com/question/7694106
60 minutes = 1h
500/x = 10/100
She swam 5 kilometers per hour.
Partial eclipse, Annular eclipse,
Total Eclipse and Hybrid Eclipse are the four different
types of the eclipses. When the Sun and Moon are exactly in line with the Earth, the annular eclipse occurs.
The new moon is invisible from the earth and it is silhouetted against the sun,
this can only be seen in annular eclipse. Annular word means ring shaped, we
can see a dark ring of fire in annular eclipse. It has five different stages
that are first contact, second contact, maximum eclipse, third contact and 4th
contact.
the correct choice is
C) an electric current.
as a magnet is turned quickly relative to a coil, the magnetic flux linked with coil varies due to variation of angle of direction of magnetic field with normal to the plane of coil. the coil resist this change of magnetic flux in it by inducing emf in it so as to nullify the variation in magnetic flux. Due to this induced emf , electric current flows through the coil.
Answer:
d) -4.0
Explanation:
The magnification of a lens is given by

where
M is the magnification
q is the distance of the image from the lens
p is the distance of the object from the lens
In this problem, we have
p = 50 cm is the distance of the object from the lens
q = 250 cm - 50 cm is the distance of the image from the lens (because the image is 250 cm from the obejct
Also, q is positive since the image is real
So, the magnification is
