Let's list the given information. The frictional force, denoted as Ff, is equal to 0.200 N. We have to find the normal force, denoted as Fn. The relationship between Ff and Fn is written as:
Ff = μFn
where μ is the coefficient of friction
If there is no given data for μ, we can't solve this problem. Suppose μ = 0.5, then the normal force would be:
Fn = Ff/μ = 0.2/0.5 = 0.4 N
Answer:
v' = 2.4 m/s
Explanation:
Given that,
Mass of one skater, m = 60 kg
Mass of the other's skater, m' = 60 kg
The two skaters push off each other. After the push, the smaller skater has a velocity of 3.0 m/s.
When there is no external force acting on a system, the momentum remains conserved. It means initial momentum is equal to the final momentum. Let v' is the velocity of the larger skater.
mv = m'v'

So, the velocity of the larger skater is 2.4 m/s.
Answer:
1.5 Amp is rated for 5 W so it would not be possible
Answer:
B. +m
Explanation:
The magnification of an image is defined as the ratio between the size of the image and of the object:

where we have
y' = size of the image
y = size of the object
There are two possible situations:
- When m is positive, y' has same sign as y: this means that the image image is upright
- When m is negative, y' has opposite sign to y: this means that the image is upside down
Therefore, the correct option representing an upright image is
B. +m
just analyze it in this way:
20cos30*=10( radical 3 )
20sin30*=10